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Preface

These notes are devoted to the study of some classical problems in the geometry

of Banach spaces. The novelty lies in the fact that their solution relies heavily

on techniques coming from descriptive set theory.

The central theme is universality problems. In particular, the text provides

an exposition of the methods developed recently in order to treat questions of

the following type.

(Q) Let C be a class of separable Banach spaces such that every space X in the

class C has a certain property, say property (P). When can we find a sepa-

rable Banach space Y which has property (P) and contains an isomorphic

copy of every member of C?

We will consider quite classical properties of Banach spaces, such as “being

reflexive”, “having separable dual”, “not containing an isomorphic copy of c0”,

“being non-universal”, etc.

It turns out that a positive answer to problem (Q), for any of the above

mentioned properties, is possible if (and essentially only if) the class C is “sim-

ple”. The “simplicity” of C is measured in set theoretic terms. Precisely, if the

class C is analytic in a natural “coding” of separable Banach spaces, then we can

indeed find a separable space Y which is universal for the class C and satisfies

the requirements imposed above.

The text is addressed to both functional analysts and set theorists. We have

tried to follow the terminology and notation employed by these two groups of re-

searchers. Concerning Banach space theory, we follow the conventions adopted

in the monograph of Lindenstrauss and Tzafriri [LT]. Our descriptive set the-

oretic terminology follows the one employed in the book of Kechris [Ke]. Still,

we had to make a compromise; so throughout these notes by N = {0, 1, 2, . . . }
we shall denote the natural numbers.

We proceed to discuss how this work is organized. It is divided into three

parts which are largely independent from each other and can be read separately.
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iv PREFACE

In the first part, consisting of Chapters 1 and 2, we display the necessary back-

ground and set up the frame in which this work will be completed. The second

part, consisting of Chapters 3 and 4, is devoted to the study of two “gluing”

techniques for producing separable Banach spaces from given classes of Banach

spaces with a Schauder basis. In the third part, consisting of Chapters 5 and 6,

we present two important embedding results and their parameterized versions.

The previous material is used in Chapter 7 which is, somehow, the goal of

these notes. The notion of a strongly bounded class of separable Banach spaces

is the central concept in Chapter 7. Several natural classes of separable Banach

spaces are shown to be strongly bounded. This structural information is used

to answer a number of universality problems in a unified manner.

To facilitate the interested reader we have also included four appendices. The

first one contains an introduction to rank theory, a basic theme in descriptive

set theory which is crucial throughout this work. In the second appendix we

present some basic concepts and results from Banach space theory. Beside [LT],

these topics are covered in great detail in other excellent books, such as [AK]

and [Di], as well as, in the two volumes of the “Handbook of the Geometry of

Banach spaces” [JL1, JL2]. In the third appendix we give a short description of

a rather technical (yet very efficient) method in descriptive set theory, known

as the “Kuratowski–Tarski algorithm”. The method is used to compute the

complexity of sets and relations. Finally, in the fourth appendix we discuss

some open problems.

A significant part of the material presented in these notes has been discov-

ered jointly with S. A. Argyros and has been published in [AD]. Actually, this

text is the natural sequel of [AD] since it is mainly focused on further discov-

eries contained in [D3] and in our joint papers with V. Ferenczi [DF] and with

J. Lopez-Abad [DL]. Several new results are also included. Needless to say that

the solutions of the main problems are based on the work of many researchers

including, among others, B. Bossard, J. Bourgain, N. Ghoussoub, B. Maurey,

G. Pisier, W. Schachermayer and M. Zippin. Bibliographical information on the

content of each chapter is contained in its final section, named as “Comments

and Remarks”.

We think that this work has, mainly, two reasons of interest. The first one

is that it answers some basic problems in the geometry of Banach spaces and,

more important, it explains several phenomena discovered so far. The second

reason is that the solutions of the relevant problems combine techniques coming

from two (seemingly) unrelated disciplines; namely from Banach space theory

and from descriptive set theory.
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Chapter 1

Basic concepts

1.1 Polish spaces and standard Borel spaces

Polish spaces

A Polish space is a separable completely metrizable topological space. There

are two fundamental examples of Polish spaces. The first one is the Baire space

NN consisting of all sequences of natural numbers. The second one is the Cantor

space 2N consisting of all sequences of 0’s and 1’s.

The “definable” subsets of a Polish space X can be classified according to

their complexity. At the first level we have the Borel subsets of X. The Borel

σ-algebra B(X) is further analyzed in a hierarchy of length ω1 consisting of the

open and closed sets, then the Fσ and Gδ, etc. In modern logical notation these

classes are denoted by Σ0
ξ ,Π

0
ξ and ∆0

ξ (1 6 ξ < ω1), where

Σ0
1 = open, Π0

1 = closed, ∆0
1 = clopen,

Σ0
ξ =

{⋃
n

An : An is in Π0
ξn for some 1 6 ξn < ξ

}
,

Π0
ξ = complements of Σ0

ξ sets,

∆0
ξ = Σ0

ξ ∩Π0
ξ .

Hence Σ0
2 = Fσ, Π0

2 = Gδ, etc.

Beyond the class of Borel subsets of X we have the projective sets which are

defined using the operations of projection (or continuous image) and comple-

mentation. The class of projective sets is analyzed in a hierarchy of length ω,

consisting of the analytic sets (continuous images of Borel sets), the co-analytic

(complements of analytic sets), etc. Again, in logical notation, we have

Σ1
1 = analytic, Π1

1 = co-analytic, ∆1
1 = Σ1

1 ∩Π1
1,

1
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Σ1
n+1 = continuous images of Π1

n sets,

Π1
n+1 = complements of Σ1

n+1 sets,

∆1
n+1 = Σ1

n+1 ∩Π1
n+1.

A fundamental result due to Souslin (see [Ke, Theorem 14.11]) asserts that the

class ∆1
1 coincides with the Borel σ-algebra; that is, a subset A of a Polish space

X is Borel if and only if both A and X \A are analytic.

Standard Borel spaces

A measurable space is a pair (X,S) where X is a set and S is a σ-algebra on X.

A measurable space (X,S) is said to be a standard Borel space if there exists a

Polish topology τ on X such that the Borel σ-algebra of (X, τ) coincides with

the σ-algebra S.

A classical fact concerning the Borel subsets of a Polish space (X, τ) is that

if B ∈ B(X, τ), then there exists a stronger Polish topology τ ′ on X with

B(X, τ) = B(X, τ ′) and such that B is clopen in (X, τ ′) (see [Ke, Theorem

13.1]). It follows that if (X,S) is a standard Borel space and B ∈ S, then B

equipped with the relative σ-algebra SB = {C ∩ B : C ∈ S} is also a standard

Borel space.

The above fact implies that the Polish topology τ witnessing that the mea-

surable space (X,S) is standard, is not unique. As the Borel hierarchy depends

on the topology of the underlying space, we will not consider the classes Σ0
ξ(X, τ)

(1 6 ξ 6 ω), unless the topology τ is of particular importance. On the other

hand, if τ and τ ′ are two Polish topologies on X both witnessing that (X,S) is

standard, then Σ1
n(X, τ) = Σ1

n(X, τ ′) for every n > 1. That is, the projective

hierarchy of (X,S), which will be at the center of our focus, is independent of

the topology τ .

A basic example of a standard Borel space is the Effros–Borel structure.

Specifically, for every Polish space X by F (X) we denote the set of all closed

subsets of X. We endow F (X) with the σ-algebra S generated by the sets

{F ∈ F (X) : F ∩ U 6= ∅}

where U ranges over all open subsets of X. The measurable space
(
F (X), S

)
is

called the Effros–Borel space of F (X). We have the following important result

(see [Ke, Theorem 12.6]).

Theorem 1.1. If X is Polish, then the Effros–Borel space of F (X) is standard.

A very useful tool is the following selection result due to Kuratowski and

Ryll-Nardzewski (see also [Sr, Theorem 5.2.1]).
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Theorem 1.2. [KRN] Let X and Y be Polish spaces and let F : Y → F (X) be

a Borel map such that F (y) 6= ∅ for every y ∈ Y . Then there exists a sequence

fn : Y → X (n ∈ N) of Borel selectors of F (i.e., fn(y) ∈ F (y) for every n ∈ N
and every y ∈ Y ) such that the sequence

(
fn(y)

)
is dense in F (y) for all y ∈ Y .

A structure closely related to the Effros–Borel space of a Polish space X, is

the hyperspace K(X) of all compact subsets of X equipped with the Vietoris

topology τV , that is, the topology generated by the sets

{K ∈ K(X) : K ∩ U 6= ∅} and {K ∈ K(X) : K ⊆ U}

where U varies over all open subsets of X. The hyperspace
(
K(X), τV

)
inherits

most of the topological properties of the space X. In particular, we have the

following theorem (see [Ke, Theorems 4.25 and 4.26]).

Theorem 1.3. If X is Polish (respectively, compact metrizable), then K(X) is

Polish (respectively, compact metrizable).

It is easy to see that for every Polish space X the Borel σ-algebra of the space(
K(X), τV

)
coincides with the relative σ-algebra of the Effros–Borel structure.

This observation yields the following proposition.

Proposition 1.4. Let X and Y be Polish spaces and let f : Y → K(X) be a

map. Then f is Borel if and only if the set {y ∈ Y : f(y) ∩ U 6= ∅} is Borel for

every open subset U of X.

1.2 Trees

The concept of a tree is a basic combinatorial tool in both Banach space theory

and descriptive set theory and it will be decisive throughout these notes. We

will follow the practice of descriptive set theorists and we will consider trees as

sets of finite sequences.

Specifically, let Λ be a nonempty set and denote by Λ<N the set of all finite

sequences of elements of Λ (the empty sequence is included). We equip Λ<N

with the strict partial order @ of extension. We will use the letters t, s, w to

denote elements of Λ<N.

For every σ ∈ ΛN and n ∈ N with n > 1 we set σ|n =
(
σ(0), . . . , σ(n − 1)

)
,

while σ|0 = ∅. For every t ∈ Λ<N the length |t| of t is defined to be the

cardinality of the set {s : s @ t}. If t, s ∈ Λ<N, then by tas we denote the

concatenation of t and s. Two nodes t, s ∈ Λ<N are said to be comparable if

either s v t or t v s; otherwise, they are said to be incomparable. We denote

by t ⊥ s the fact that t and s are incomparable. A subset of Λ<N consisting of

pairwise incomparable nodes is said to be an antichain, while a subset of Λ<N

consisting of pairwise comparable nodes is said to be a chain. A maximal chain
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is called a branch. Two subsets A and B of Λ<N are said to be incomparable if

for every t ∈ A and every s ∈ B we have t ⊥ s. Otherwise, A and B are said to

be comparable.

A tree T on Λ is a subset of Λ<N which is closed under taking initial segments.

By Tr(Λ) we denote the set of all trees on Λ. Hence,

T ∈ Tr(Λ)⇔ ∀s, t ∈ Λ<N (s @ t and t ∈ T ⇒ s ∈ T ). (1.1)

Notice that if T ∈ Tr(Λ), then ∅ ∈ T . Also observe that if Λ is countable, then

by identifying every tree T on Λ with its characteristic function (i.e., an element

of 2Λ<N
) we see that the set Tr(Λ) is a closed (hence compact) subspace of 2Λ<N

.

A tree T on Λ is said to be pruned if for every s ∈ T there exists t ∈ T

with s @ t. It is said to be perfect if for every t ∈ T there exist two nodes t1
and t2 in T properly extending t and with t1 ⊥ t2. The body [T ] of T is the set

{σ ∈ ΛN : σ|k ∈ T ∀k ∈ N}.
For every subset A of ΛN we set

TA = {σ|n : σ ∈ A and n ∈ N} ∈ Tr(Λ). (1.2)

We call TA the tree generated by A. Notice that TA is pruned. Also observe

that the body [TA] of TA is equal to the closure of A in ΛN, where Λ is equipped

with the discrete topology and ΛN with the product topology. The set of all

nonempty closed subsets of ΛN is in one-to-one correspondence with the set of

all pruned trees on Λ via the map F 7→ TF .

A tree T on Λ is said to be well-founded if for every σ ∈ ΛN there exists

k ∈ N such that σ|k /∈ T , equivalently if [T ] = ∅. Otherwise, it is called ill-

founded. By WF(Λ) we denote the set of all well-founded trees on Λ. The class

of ill-founded trees is denoted by IF(Λ). If Λ = N, then by WF and IF we shall

denote the sets of well-founded and ill-founded trees on N respectively.

Let Λ be an infinite set and set κ = |Λ|. For every well-founded tree T on Λ

we define

T ′ = {s ∈ T : ∃t ∈ T with s @ t} ∈WF(Λ). (1.3)

By transfinite recursion, we define the iterated derivatives (T ξ : ξ < κ+) of T

by the rule

T 0 = T, T ξ+1 = (T ξ)′ and Tλ =
⋂
ξ<λ

T ξ if λ is limit.

Notice that if T ξ 6= ∅, then T ξ+1  T ξ. It follows that the transfinite sequence

(T ξ : ξ < κ+) is eventually empty. The order o(T ) of T is defined to be the least

ordinal ξ such that T ξ = ∅. If T ∈ IF(Λ), then by convention we set o(T ) = κ+.

In particular, if Λ is countable, then o(T ) < ω1 for every T ∈ WF(Λ) while

o(T ) = ω1 for every T ∈ IF(Λ).
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Let S and T be trees on Λ1 and Λ2 respectively. A map φ : S → T is called

monotone if for every s1, s2 ∈ S with s1 @ s2 we have φ(s1) @ φ(s2). The

following fact is quite useful.

Proposition 1.5. Let S and T be trees on two countable sets Λ1 and Λ2 respec-

tively. Then o(S) 6 o(T ) if and only if there exists a monotone map φ : S → T .

Proof. First assume that there exists a monotone map φ : S → T . If T is

ill-founded, then obviously we have o(S) 6 o(T ). So, assume that T is well-

founded. The existence of the monotone map φ implies that S is also well-

founded. By transfinite induction, we see that for every countable ordinal ξ and

every s ∈ Sξ we have φ(s) ∈ T ξ. Hence, o(S) 6 o(T ).

Conversely, assume that o(S) 6 o(T ). If T is ill-founded, then we select

σ ∈ [T ]. For every s ∈ S with |s| = n we set φ(s) = σ|n. It is easy to check that

φ : S → T is a monotone map.

So, it remains to treat the case where T is well-founded. The monotone map

φ : S → T will be constructed by recursion on the length of sequences in S, as

follows. We set φ(∅) = ∅. Let k ∈ N and assume that we have defined φ(s) ∈ T
for every s ∈ S with |s| 6 k so that

∀ξ < ω1 (s ∈ Sξ ⇒ φ(s) ∈ T ξ). (1.4)

Let w ∈ S with |w| = k + 1. There exist s ∈ S with |s| = k and λ1 ∈ Λ1 such

that w = saλ1. Let t = φ(s). Invoking (1.4), we see that there exists λ2 ∈ Λ2

such that, setting φ(w) = taλ2, property (1.4) is satisfied for w and φ(w). This

completes the recursive construction of the map φ which is easily seen to be

monotone. The proof is completed.

We will also consider trees on products of sets. In particular, if Λ1 and Λ2

are nonempty sets, then we identify every tree T on Λ1 ×Λ2 with the set of all

pairs (s, t) ∈ Λ<N
1 × Λ<N

2 such that |s| = |t| = k and either s = t = ∅ or(
(s0, t0), . . . , (sk−1, tk−1)

)
∈ T.

Under the above convention the body of a tree T on Λ1 × Λ2 is identified with

the set of all (σ1, σ2) ∈ ΛN
1 × ΛN

2 for which (σ1|k, σ2|k) ∈ T for every k ∈ N.

The following representation of analytic sets provides the link between trees and

descriptive set theory (see [Ke]).

Theorem 1.6. Let Λ be a countable set and let A be a subset of ΛN. Then A

is Σ1
1 if and only if there exists a tree T on Λ× N such that

A = proj[T ] =
{
σ ∈ ΛN : ∃τ ∈ NN with (σ, τ) ∈ [T ]

}
.

We need to deal with trees which consist of nonempty finite sequences. We

will give them a special name, as follows.
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Definition 1.7. Let Λ be a nonempty set. A B-tree on Λ is a subset T of

Λ<N \ {∅} such that

∀t, s ∈ Λ<N \ {∅} (s @ t and t ∈ T ⇒ s ∈ T ). (1.5)

Notice that T is a B-tree on Λ if and only if T ∪ {∅} ∈ Tr(Λ). Using

this remark we can relativize to B-trees all previously presented concepts. For

instance, we say that a B-tree T on Λ is pruned (respectively, well-founded,

perfect) if T ∪{∅} is pruned (respectively, well-founded, perfect). The body [T ]

of a pruned B-tree T is the body of T ∪ {∅}. Notice that

[T ] = {σ ∈ ΛN : σ|k ∈ T ∀k > 1}.

If A is a subset of ΛN, then we continue to denote by TA the B-tree generated

by A; that is, TA = {σ|n : σ ∈ A and n > 1}. From the context it will be clear

whether we refer to the tree or to the B-tree generated by A.

A segment s of a tree, or of a B-tree, T on Λ is a chain of T satisfying

∀s, w, t ∈ T (s, t ∈ T and s v w v t⇒ w ∈ T ). (1.6)

If σ ∈ ΛN and k ∈ N, then a segment of the form {t ∈ T : t v σ|k} is called an

initial segment of T , while a segment of the form {σ|n : n > k and σ|n ∈ T} is

called a final segment. More generally, a subset A of a tree (or of a B-tree) T

on Λ is said to be segment complete if

∀s, w, t ∈ T (s, t ∈ A and s v w v t⇒ w ∈ A). (1.7)

Notice that a segment of T is just a segment complete chain of T .

We shall denote and name some special trees. By N<N we denote the Baire

tree, while by 2<N we denote the Cantor tree. By [N]<N we denote the tree on

N consisting of all strictly increasing finite sequences of natural numbers, while

by Σ we denote the B-tree corresponding to [N]<N (that is, Σ consists of all

nonempty strictly increasing finite sequences on N).

Finally, let us introduce some pieces of notation closely related to trees. By

[N]∞ we denote the set of all infinite subsets of N. More generally, for every

infinite subset L of N by [L]∞ we denote the set of all infinite subsets of L. If

k ∈ N with k > 1 and L ∈ [N]∞, then by [L]k we denote the set of all subsets

of L of cardinality k. Notice that [L]k is naturally identified with the set of all

strictly increasing sequences in L of length k.

1.3 Universal spaces

There are two fundamental universality results in Banach space theory which

are of particular importance in these notes. The first one is classical and asserts

that the space C(2N) is isometrically universal for all separable Banach spaces.
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Theorem 1.8. Let X be a separable Banach space. Then there exists a closed

subspace Y of C(2N) which is isometric to X.

Proof. Let E be the closed unit ball of X∗ with the weak* topology. It is a

compact metrizable space. Let f : 2N → E be a continuous surjection. Define

T : X → C(2N) by T (x)(σ) = f(σ)(x) for every σ ∈ 2N and every x ∈ X. It is

easy to see that T is a linear isometric embedding. The proof is completed.

The second result is due to Pe lczyński and provides a space U with a

Schauder basis (un) which is universal for all basic sequences.

Theorem 1.9. [P] There exists a space U with a normalized bi-monotone

Schauder basis (un) such that for every seminormalized basic sequence (xn)

in a Banach space X there exists L = {l0 < l1 < · · · } ∈ [N]∞ such that (xn)

is equivalent to (uln) and the natural projection PL onto span{un : n ∈ L}
has norm one. Moreover, if U ′ is another space with this property, then U ′ is

isomorphic to U .

Proof. Let (dn) be a countable dense subset of the sphere of C(2N). Also let

(xn) be a seminormalized basic sequence in a Banach space X. By Theorem 1.8

and Proposition B.3, there exists L = {l0 < l1 < · · · } ∈ [N]∞ such that (xn)

is equivalent to (dln). This is the crucial observation in the construction of the

space U which goes as follows.

For every t = (n0 < · · · < nk) ∈ Σ we set nt = nk (by Σ we denote the

B-tree on N consisting of all nonempty strictly increasing finite sequences; see

Section 1.2). We fix a bijection ϕ : Σ → N such that ϕ(t) < ϕ(s) if t @ s. For

every t ∈ Σ we define ft ∈ C(2N) by ft = dnt . The space U is the completion of

c00(Σ) under the norm

‖x‖ = sup
{∥∥∑

t∈s
x(t)ft

∥∥
∞ : s is a segment of Σ

}
.

Let (un) be the enumeration, according to ϕ, of the standard Hamel basis (et)t∈Σ

of c00(Σ). The sequence (un) defines a normalized bi-monotone Schauder basis

of U .

For every σ ∈ [Σ] we set Lσ = {ϕ(σ|k) : k > 1} ∈ [N]∞. If {l0 < l1 < · · · }
is the increasing enumeration of Lσ, then we set Xσ = span{uln : n ∈ N}.
Let Pσ : U → Xσ be the natural projection. Notice that ‖Pσ‖ = 1. By the

remarks in the beginning of the proof, we see that for every seminormalized

basic sequence (xn) in a Banach space X, there exists σ ∈ [Σ] such that if

Lσ = {l0 < l1 < · · · }, then (xn) is equivalent to (uln). Hence, the space U has

the desired properties.

Finally, to see that the space U is unique (up to isomorphism) we argue as

follows. Let U ′ be another space with the properties described in the statement
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of the theorem. There exist Banach spaces X and Y so that U ∼= U ′ ⊕X and

U ′ ∼= U⊕Y . Moreover, there exists a space Z such that U ∼= (U⊕U⊕ . . . )`2⊕Z.

Notice that

U ⊕ U ∼= U ⊕ (U ⊕ U ⊕ . . . )`2 ⊕ Z ∼= (U ⊕ U ⊕ . . . )`2 ⊕ Z ∼= U.

Similarly, we have U ′ ⊕ U ′ ∼= U ′. It follows that

U ∼= U ′ ⊕X ∼= U ′ ⊕ U ′ ⊕X ∼= U ′ ⊕ U ∼= U ⊕ U ⊕ Y ∼= U ⊕ Y ∼= U ′.

The proof is completed.

1.4 Comments and Remarks

1. The study of Borel and analytic subsets of Polish spaces was initiated with

the work of Lebesgue and Souslin. The classical topological theory is presented

in the monograph of Kuratowski [Ku]. The subject has been revolutionized

with ideas from recursion theory leading to a powerful unified theory known as

effective descriptive set theory. The monograph of Moschovakis [Mo] is devoted

to the study of the methods and results of effective descriptive set theory as well

as of the influence of strong axioms of set theory on the structure of projective

sets. The book of Kechris [Ke] is an updated presentation of classical descriptive

set theory and has become the standard reference on the subject. It is written

under the modern point of view and with an emphasis to applications.

2. Theorem 1.8 can be traced back to the beginnings of Banach space theory

and appears in the classical monograph of Stefan Banach [Ba]. As we have men-

tioned, Theorem 1.9 is due to Pe lczyński [P]. Our presentation is based on an

alternative approach to the construction of the space U due to Schechtman [Sch].

There is an unconditional version of U also due to Pe lczyński.

Theorem 1.10. [P] There exists a space V with an unconditional basis (vn)

such that for every unconditional basic sequence (yn) in a Banach space Y there

exists L = {l0 < l1 < · · · } ∈ [N]∞ such that (yn) is equivalent to (vln). More-

over, if V ′ is another space with this property, then V ′ is isomorphic to V .

We refer to [LT, Theorem 2.d.10] for a proof of Theorem 1.10 as well as for an

account of related results.



Chapter 2

The standard Borel space of

all separable Banach spaces

In this chapter we will present the general framework on which the main results

contained in these notes are based. This framework has been defined by Bossard

in his Thesis [Bos1]. The central idea is that, while the collection of all separable

Banach spaces is not a set, it can be naturally “coded” as a standard Borel space.

This coding has been proved to be compatible with any notion, construction or

operation encountered in Banach space theory. By now it has found sufficiently

many applications in order to be considered as one of its internal parts.

2.1 Definitions and basic properties

Let X be a separable Banach space (not necessarily infinite-dimensional). We

endow the set F (X) of all closed subsets of X with the Effros–Borel structure,

as this structure was described in the previous chapter. By Theorem 1.2, there

exists a sequence dn : F (X) → X (n ∈ N) of Borel maps with dn(F ) ∈ F for

every F ∈ F (X) and every n ∈ N, and such that
(
dn(F )

)
is dense in F for every

nonempty closed subset F of X.

Now let F ∈ F (X). Then F is a linear subspace of X if and only if

(0 ∈ F ) and (∀n,m ∈ N ∀p, q ∈ Q we have pdn(F ) + qdm(F ) ∈ F ). (2.1)

It is easy to see that (2.1) defines a Borel subset of F (X). By Theorem 1.8, the

space C(2N) is isometrically universal for all separable Banach spaces. These

observations lead to the following definition.

Definition 2.1. [Bos1] For every separable Banach space X by Subs(X) we

denote the subset of F (X) consisting of all linear subspaces of X endowed with

9
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the relative Effros–Borel σ-algebra. If X = C(2N), then by SB we denote the

space Subs
(
C(2N)

)
.

We recall that a Borel subset of a standard Borel space equipped with the

relative σ-algebra is a standard Borel space on its own. This fact and the above

discussion yield the following basic result.

Theorem 2.2. [Bos1] For every separable Banach space X the space Subs(X)

is standard. In particular, SB is a standard Borel space.

By Theorems 1.8 and 2.2, we view the space SB as the set of all separable

Banach spaces and we call it as the standard Borel space of all separable

Banach spaces. With this identification properties of separable Banach spaces

become sets in SB. So, we define the following subsets of SB by considering

classical properties of Banach spaces.

Property Corresponding Set

being uniformly convex UC

being reflexive REFL

having separable dual SD

not containing `1 NC`1
being non-universal NU

This chapter is devoted to the study of the descriptive set theoretic structure

of the above defined classes. To this end, we will need some properties of the

space SB which are gathered below. Most of them are rather easy consequences

of the relevant definitions.

2.1.1 Properties of SB

(P1) The set {(Y,X) : Y ⊆ X} is Borel in SB× SB. That is, the relation “Y is

a subspace of X” is Borel.

(P2) For every X ∈ SB there exists a sequence dn : Subs(X) → X (n ∈ N) of

Borel maps with dn(Y ) ∈ Y for every Y ∈ Subs(X) and every n ∈ N, and such

that
(
dn(Y )

)
is norm dense in Y . This follows by Theorem 1.2.

(P3) For every X ∈ SB there exists a sequence Sn : Subs(X) → X (n ∈ N)

of Borel maps with the following properties. If Y = {0}, then Sn(Y ) = 0 for

every n ∈ N. If Y ∈ Subs(X) with Y 6= {0}, then Sn(Y ) ∈ SY for every n ∈ N
and the sequence

(
Sn(Y )

)
is norm dense in the sphere SY of Y . This follows

from the fact that the sequence
(
dn(Y )

)
in (P2) above can be chosen so that

dn(Y ) 6= 0 for every n ∈ N and every Y ∈ Subs(X) with Y 6= {0}.
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(P4) For every X ∈ SB the relation {(y, Y ) : y ∈ Y } is Borel in X × Subs(X).

That is, the relation “the vector y is in the subspace Y ” is Borel.

(P5) For every X ∈ SB the relation
{(

(yn), Y
)

: span{yn : n ∈ N} = Y
}

is

Borel in XN × Subs(X). That is, the relation “the closed linear span of the

sequence (yn) is the space Y ” is Borel. To see this notice that

span{yn : n ∈ N} = Y ⇔ (∀n ∈ N we have yn ∈ Y ) and

(∀k, l ∈ N ∃j ∈ N and ∃a0, . . . , aj ∈ Q with∥∥dk(Y )−
j∑

n=0

anyn
∥∥ 6

1

l + 1
).

(P6) For every k ∈ N with k > 1 and every X ∈ SB the relation of k-equivalence

between sequences in X is closed.

(P7) The relation {(X,Y ) : X ∼= Y } is analytic in SB × SB. That is, the

relation “X is isomorphic to Y ” is Σ1
1. Indeed observe that

X ∼= Y ⇔ ∃(xn), (yn) ∈ C(2N)N with

(span{xn : n ∈ N} = X) and (span{yn : n ∈ N} = Y ) and

[∃k ∈ N with (xn) is k-equivalent to (yn)].

The relation “X is isometric to Y ” is also analytic.

(P8) For every X ∈ SB the subsets NBX ,SBX and BX of XN defined by

(xn) ∈ NBX ⇔ (xn) is normalized basic,

(xn) ∈ SBX ⇔ (xn) is seminormalized basic, and

(xn) ∈ BX ⇔ (xn) is basic

are all Borel.

(P9) Let X ∈ SB. By FD(X) we shall denote the subset of Subs(X) consisting

of all finite-dimensional subspaces of X. Then FD(X) is a Borel subset of

Subs(X). To see this let (dn) be the sequence of Borel maps obtained by (P2)

above and notice that

Y ∈ FD(X) ⇔ ∃m ∈ N ∀k, l ∈ N ∃a0, . . . , am ∈ Q with∥∥dk(F )−
m∑
n=0

andn(F )
∥∥ 6

1

l + 1
.

By FD we shall denote the Borel subset of SB consisting of all finite-dimensional

subspaces of C(2N).
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2.1.2 Coding the dual of an X ∈ SB

We will frequently deal with the dual X∗ of a separable Banach space X, and

so, we need to define a coding of the set {X∗ : X ∈ SB}. To this end, let

(dn) be the sequence of Borel maps described in (P2) above. Notice that for

every p, q ∈ Q and every n,m ∈ N the map pdn + qdm is Borel. Hence, we may

assume that for every X ∈ SB the set
(
dn(X)

)
is dense in X and, moreover,

it is closed under rational linear combinations. For every n ∈ N consider the

map rn : SB → R defined by rn(X) = 1/‖dn(X)‖ if dn(X) 6= 0 and rn(X) = 0

if dn(X) = 0. Clearly the map rn is Borel. Also let H be the closed unit ball

of `∞ equipped with the weak* topology (equivalently, H = [−1, 1]N with the

product topology).

Let X ∈ SB. For every x∗ ∈ BX∗ consider the sequence

fx∗ =
(
r0(X)x∗(d0(X)), . . . , rn(X)x∗(dn(X)), . . .

)
and notice that fx∗ ∈ H. We will identify the closed unit ball BX∗ of X∗ with

the set

KX = {fx∗ ∈ H : x∗ ∈ BX∗}.

Define D ⊆ SB×H by

(X, f) ∈ D⇔ f ∈ KX . (2.2)

The basic properties of the set D are summarized below.

(P10) The set D is Borel. Indeed, notice that

(X, f) ∈ D ⇔ ∀n,m, k ∈ N ∀p, q ∈ Q we have[
pdn(X) + qdm(X) = dk(X)⇒
p‖dn(X)‖f(n) + q‖dm(X)‖f(m) = ‖dk(X)‖f(k)

]
.

(P11) For every X ∈ SB the set KX is compact. Moreover, the map

(BX∗ ,w
∗) 3 x∗ 7→ fx∗ ∈ KX

is a homeomorphism.

(P12) Let X ∈ SB and x∗0, . . . , x
∗
n ∈ in BX∗ . Then for every a0, . . . , an ∈ R we

have ∥∥ n∑
i=0

aix
∗
i

∥∥ = sup
{∣∣ n∑

i=0

airk(X)x∗i
(
dk(X)

)∣∣ : k ∈ N
}

= sup
{∣∣ n∑

i=0

aifx∗i (k)
∣∣ : k ∈ N

}
=
∥∥ n∑
i=0

aifx∗i
∥∥
∞.

In other words, the identification of BX∗ with KX is isometric.
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2.2 The class REFL

Reflexive spaces

Consider the set

REFL = {X ∈ SB : X is reflexive}.

We will define a Borel map Φ: REFL→ Tr such that for every X ∈ SB we have

X ∈ REFL⇔ Φ(X) ∈WF.

That is, the map Φ is a Borel reduction of REFL to WF (see Definition A.7). By

Fact A.8, this implies that the set REFL is Π1
1 and that the map X 7→ o

(
Φ(X)

)
is a Π1

1-rank on REFL.

Specifically, let X ∈ SB. For every ε > 0 and every K > 1 we define a tree

T = TREFL(X, ε,K) on SX (the sphere of X) by the rule

(xn)ln=0 ∈ T ⇔ (xn)ln=0 is K-Schauder and ∀a0, . . . , al ∈ R+

with

l∑
n=0

an = 1 we have
∥∥ l∑
n=0

anxn
∥∥ > ε (2.3)

where a finite sequence (xn)ln=0 is said to be K-Schauder if

∥∥ m∑
n=0

anxn
∥∥ 6 K

∥∥ l∑
n=0

anxn
∥∥

for every 0 6 m 6 l and every a0, . . . , an ∈ R. The tree TREFL(X, ε,K)

describes all our attempts to build a normalized basic sequence in X having

basis constant less than or equal to K and with no weakly null subsequence.

Notice that if 0 < ε′ 6 ε and 1 6 K 6 K ′, then the tree TREFL(X, ε,K) is a

downwards closed subtree of TREFL(X, ε′,K ′). We have the following lemma.

Lemma 2.3. [AD] Let X ∈ SB. Then X is reflexive if and only if for every

ε > 0 and every K > 1 the tree TREFL(X, ε,K) is well-founded.

Proof. Let ε > 0 andK > 1 and assume, first, that the tree T = TREFL(X, ε,K)

is not well-founded. There exists a sequence (xn) in X such that (xn)ln=0 ∈ T

for every l ∈ N. Notice that (xn) is a normalized basic sequence. By Rosenthal’s

dichotomy [Ro2], either there exists L = {l0 < l1 < · · · } ∈ [N]∞ such that the

sequence (xln) is equivalent to the standard unit vector basis of `1, or there

exist M = {m0 < m1 < · · · } ∈ [N]∞ and x∗∗ ∈ X∗∗ such that the sequence

(xmn) is weak* convergent to x∗∗. In the first case, we immediately obtain that

X is not reflexive. In the second case, we distinguish the following subcases. If

x∗∗ ∈ X∗∗ \X, then clearly X is not reflexive. So assume that x∗∗ ∈ X. Since

(xmn) is basic, we see that x∗∗ = 0. That is, the sequence (xmn) is weakly
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null. By Mazur’s theorem, there exists a finite convex combination z of (xmn)

such that ‖z‖ < ε. But this is clearly impossible by the definition of the tree

TREFL(X, ε,K). Hence, X is not reflexive.

Conversely, assume that X is not reflexive. There exists x∗∗ ∈ X∗∗ \ X
with ‖x∗∗‖ = 1. If `1 embeds into X, then we can easily find ε and K such

that the tree TREFL(X, ε,K) is not well-founded. If `1 does not embed into X,

then, by the Odell–Rosenthal theorem [OR], there exists a sequence (zn) in BX
which is weak* convergent to x∗∗. We may select x∗ ∈ X∗ with ‖x∗‖ 6 1 and

L ∈ [N]∞ such that x∗(zn) > 1/2 for every n ∈ L. Notice that 1/2 6 ‖zn‖ 6 1

for every n ∈ L. There exists M = {m0 < m1 < · · · } ∈ [L]∞ such that the

sequence (zmn) is basic with basis constant, say, K > 1 (see [Di, page 41]). We

set xn = zmn/‖zmn‖ for every n ∈ N. Then (xn) is a normalized basic sequence

with basis constant K. Moreover, for every l ∈ N and every a0, . . . , al ∈ R+

with
∑l
n=0 an = 1 we have

∥∥ l∑
n=0

anxn
∥∥ >

l∑
n=0

an
x∗(zmn)

‖zmn‖
>

1

2
.

It follows that (xn)ln=0 ∈ TREFL(X, 1/2,K) for every l ∈ N; that is, the tree

TREFL(X, 1/2,K) is not well-founded. The proof is completed.

Let Sn : SB → C(2N) (n ∈ N) be the sequence of Borel maps described in

property (P3) in Section 2.1.1. For every X ∈ SB and every j, k ∈ N with

j, k > 1 we define a tree TREFL(X, j, k) on N by the rule

(n0, . . . , nl) ∈ TREFL(X, j, k)⇔
(
Sn0

(X), . . . , Snl(X)
)
∈ TREFL(X, 1/j, k).

The tree TREFL(X, j, k) is just a discrete version of the tree TREFL(X, 1/j, k).

Hence, by a standard perturbation argument and Lemma 2.3, we see that

X ∈ REFL⇔ ∀j, k ∈ N \ {0} we have TREFL(X, j, k) ∈WF.

Moreover, we have the following lemma.

Lemma 2.4. For every j, k ∈ N with j, k > 1 the map X 7→ TREFL(X, j, k) is

Borel.

Proof. We fix j, k ∈ N with j, k > 1. It is enough to show that for every

t = (n0, . . . , nl) ∈ N<N the set At =
{
X ∈ SB : t ∈ TREFL(X, j, k)

}
is Borel.

Observe that

X ∈ At ⇔
(
Sn0

(X), . . . , Snl(X)
)

is k-Schauder and ∀a0, . . . , al ∈ Q+

with

l∑
i=0

ai = 1 we have
∥∥ l∑
i=0

aiSni(X)
∥∥ >

1

j
.

As the sequence (Sn) consists of Borel maps, we conclude that the set At is

Borel. The proof is completed.
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We fix a bijection 〈·, ·〉 between (N \ {0})2 and N. For every X ∈ SB we

“glue” the family
(
TREFL(X, j, k) : j, k > 1

)
of trees and we produce a tree

TREFL(X) on N defined by the rule

pat ∈ TREFL(X)⇔ p = 〈j, k〉 and t ∈ TREFL(X, j, k). (2.4)

By Lemma 2.4, the map SB 3 X 7→ TREFL(X) ∈ Tr is Borel. Moreover,

X ∈ REFL⇔ TREFL(X) ∈WF.

This is the desired reduction. Let us summarize what we have shown so far.

Theorem 2.5. [AD] The set REFL is Π1
1 and the map X 7→ o

(
TREFL(X)

)
is

a Π1
1-rank on REFL.

We proceed to give an estimate of the order of the tree TREFL(X). First we

notice that for every X ∈ REFL and every pair j, k of non-zero integers we have

o
(
TREFL(X, j, k)

)
6 o

(
TREFL(X, 1/j, k)

)
. Concerning the opposite inequality

we have the following lemma.

Lemma 2.6. Let X ∈ REFL, K > 1 and ε > 0. Also let j, k ∈ N with 2ε−1 6 j

and 2K 6 k. Then o
(
TREFL(X, ε,K)

)
6 o
(
TREFL(X, j, k)

)
. In particular,

o
(
TREFL(X)

)
= sup

{
o
(
TREFL(X, ε,K)

)
: K > 1 and ε > 0

}
+ 1.

Proof. First we observe the following consequence of Proposition B.3. Let

(xn)ln=0 be a normalized K-Schauder sequence in X. If (yn)ln=0 is a finite

sequence in X such that ‖xn − yn‖ 6 (2K)−12−(n+2) for every n ∈ {0, . . . , l},
then (yn)ln=0 is 2-equivalent to (xn)ln=0.

We continue with the proof of the lemma. For notational convenience we set

T = TREFL(X, ε,K) and T = TREFL(X, j, k). If X = {0}, then T = T = {∅}.
If X 6= {0}, then recall that the sequence

(
Sn(X)

)
is dense in SX . Using this

fact and by transfinite induction, it is easy to see that for every ξ < ω1, every

(xn)ln=0 ∈ Tξ and every (p0, . . . , pl) ∈ N<N such that

‖xn − Spn(X)‖ 6 1

2K
· 1

2n+2

for every n ∈ {0, . . . , l}, we have (p0, . . . , pl) ∈ T ξ. Taking into account the

previous remark, we conclude that o(T) 6 o(T ). The proof is completed.

Finally, we notice the following properties of the above defined trees.

Proposition 2.7. Let X,Y ∈ SB. Then the following hold.

(i) If Y is isomorphic to X, then o
(
TREFL(Y )

)
= o
(
TREFL(X)

)
.

(ii) If Y is a subspace of X, then o
(
TREFL(Y )

)
6 o
(
TREFL(X)

)
.
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Uniformly convex spaces

A Banach space (X, ‖ · ‖) is said to be uniformly convex if for every ε > 0 there

exists δ > 0 such that for every x, y ∈ SX with ‖x − y‖ > ε we have that∥∥x+y
2

∥∥ 6 1− δ. We consider the class

UC = {X ∈ SB : X is uniformly convex}.

It is a classical result that every uniformly convex Banach space is reflexive (see

[LT]) and so UC ⊆ REFL.

The class UC is Borel. To see this let Sn : SB → C(2N) (n ∈ N) be the

sequence of Borel maps described in property (P3) in Section 2.1.1. Observing

that

X ∈ UC ⇔ ∀n ∈ N \ {0} ∃m ∈ N \ {0} such that
[
∀k, l ∈ N we have

‖Sk(X)− Sl(X)‖ > 1

n
⇒
∥∥Sk(X) + Sl(X)

2

∥∥ 6 1− 1

m

]
we conclude that UC is Borel.

2.3 The class SD

This section is devoted to the study of the set

SD = {X ∈ SB : X∗ is separable}.

To this end we will need a basic tool in Banach space theory introduced by

Szlenk [Sz].

2.3.1 The Szlenk index

Let Z be a separable Banach space. Also let ε > 0 and let K be a weak*

compact subset of BZ∗ . We define

sε(K) = K \
⋃{

V ⊆ Z∗ : V is weak* open and ‖ · ‖ − diam(K ∩ V ) 6 ε}

where ‖ · ‖ − diam(A) = sup{‖z∗ − y∗‖ : z∗, y∗ ∈ A} for every A ⊆ Z∗. That

is, sε(K) results by removing from K all relatively weak* open subsets of K

which have ε norm-diameter. Notice that sε(K) is weak* closed, sε(K) ⊆ K

and sε(K1) ⊆ sε(K2) if K1 ⊆ K2. It follows that sε is a derivative on the set of

all weak* compact subsets of (BZ∗ ,w
∗) (see Appendix A). Hence, by transfinite

recursion, for every weak* compact subset K of BZ∗ we define the iterated

derivatives
(
sξε(K) : ξ < ω1

)
of K by

s0
ε(K) = K, sξ+1

ε (K) = sε
(
sξε(K)

)
and sλε (K) =

⋂
ξ<λ

sξε(K) if λ is limit.
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We set Szε(K) = |K|sε if s∞ε (K) = ∅ and Szε(K) = ω1 otherwise. The Szlenk

index of Z is defined by

Sz(Z) = sup{Szε(BZ∗) : ε > 0}. (2.5)

It is easy to see that if 0 < ε1 < ε2, then Szε1(K) > Szε2(K), and so,

Sz(Z) = sup{Sz1/n(BZ∗) : n > 1} (2.6)

for every separable Banach Z. The following theorem, due to Szlenk, summa-

rizes some of the basic properties of the Szlenk index.

Theorem 2.8. [Sz] Let Z and Y be separable Banach spaces. Then the follow-

ing hold.

(i) If Y is isomorphic to Z, then Sz(Y ) = Sz(Z).

(ii) If Y is a subspace of Z, then Sz(Y ) 6 Sz(Z).

(iii) The dual Z∗ of Z is separable if and only if Sz(Z) < ω1.

Parts (i) and (ii) of Theorem 2.8 follow easily from the definition of the

Szlenk index. Part (iii) is essentially a consequence of the following fact.

Lemma 2.9. Let Z be a separable Banach space and let K be a nonempty weak*

compact subset of BZ∗ . If K is norm-separable, then for every ε > 0 there exists

a weak* open subset V of Z∗ such that K ∩V 6= ∅ and ‖ · ‖− diam(K ∩V ) 6 ε.

Proof. We fix a compatible metric ρ for (BZ∗ ,w
∗) with ρ − diam(BZ∗) 6 1

(notice that such a metric ρ is necessarily complete). Assume, towards a contra-

diction, that the lemma is false. Then we may construct a family (Vt : t ∈ 2<N)

of relatively weak* open subsets of K such that for every t ∈ 2<N, setting Ft to

be the weak* closure of Vt, the following are satisfied.

(a) Fta0 ∩ Fta1 = ∅,
(
Fta0 ∪ Fta1

)
⊆ Vt and ρ− diam(Vt) 6 2−|t|.

(b) For every n > 1, every t, s ∈ 2n with t 6= s and every pair (z∗, y∗) ∈ Vt×Vs
we have ‖z∗ − y∗‖ > ε.

We set P =
⋃
σ∈2N

⋂
n∈N Vσ|n. By (a) above, we see that P is a perfect subset

of K. By (b), we obtain that ‖z∗ − y∗‖ > ε for every z∗, y∗ ∈ P with z∗ 6= y∗.

That is, K is not norm-separable, a contradiction. The proof is completed.

2.3.2 Norm-separable compact subsets of (BZ∗ ,w∗)

Let Z ∈ SB. By E we denote the compact metrizable space (BZ∗ ,w
∗). The

Szlenk index is naturally extended to the set of all compact and norm-separable
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subsets of E and it is actually a Π1
1-rank on this set. To show this we argue as

follows. We fix a basis (Vm) of the topology of E consisting of nonempty open

sets. For every n,m ∈ N define the map Dn,m : K(E)→ K(E) by

Dn,m(K) =

{
K \ Vm : K ∩ Vm 6= ∅ and ‖ · ‖ − diam(K ∩ Vm) 6 1

n+1

K : otherwise.

Notice that Dn,m is a derivative on K(E). Now define Dn : K(E) → K(E) by

Dn(K) =
⋂
mDn,m(K). Observe that

Dn(K) = K \
⋃
{V ⊆ E : V is open and ‖ · ‖ − diam(K ∩ V ) 6

1

n+ 1
}.

Clearly Dn is derivative on K(E) too.

Lemma 2.10. For every n ∈ N the map Dn is Borel.

Proof. Fix n ∈ N. Let m ∈ N be arbitrary and consider the set

Am = {K ∈ K(E) : K ∩ Vm 6= ∅ and ‖ · ‖ − diam(K ∩ Vm) 6
1

n+ 1
}.

Since the norm of Z∗ is weak* lower semi-continuous, it is easy to see that Am
is a Borel subset of K(E). Now observe that Dn,m(K) = K if K /∈ Am and

Dn,m(K) = K \ Vm if K ∈ Am. This easily implies that the map Dn,m is Borel

for every m ∈ N.

Now, consider the map F : K(E)N → K(E)N defined by

F
(
(Km)

)
=
(
Dn,m(Km)

)
.

By the above discussion, the map F is Borel. Moreover, by Lemma A.12, the

map
⋂

: K(E)N → K(E) defined by
⋂(

(Km)
)

=
⋂
mKm is Borel too. Finally,

let I : K(E) → K(E)N be defined by I(K) = (Km) with Km = K for every

m. Clearly I is continuous. Since Dn(K) =
⋂(

F (I(K))
)
, we see that Dn is a

Borel map. The proof is completed.

By Theorem A.11 and Lemma 2.10, the set

ΩZ = {K ∈ K(E) : D∞n (K) = ∅ ∀n ∈ N}

is Π1
1. Notice that, by Lemma 2.9, we have

ΩZ = {K ∈ K(E) : K is norm-separable}.

Invoking Theorem A.11 again, we see that the map

K 7→ sup{|K|Dn : n ∈ N} (2.7)

is a Π1
1-rank on ΩZ . Observing that Sz(K) = sup{|K|Dn : n ∈ N} for every

K ∈ ΩZ we conclude that the Szlenk index is a Π1
1-rank on the set of all compact

and norm-separable subsets of E.
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2.3.3 The Szlenk index is a Π1
1-rank on SD

The following result, due to Bossard, shows that the Szlenk index, which is the

natural index on the class of spaces with separable dual, is actually a Π1
1-rank.

Theorem 2.11. [Bos1] The set SD is Π1
1 and the map X 7→ Sz(X) is a

Π1
1-rank on SD.

Proof. Following the notation in Section 2.1.2, we set H = (B`∞ ,w
∗). By the

analysis in Section 2.3.2 applied for Z = `1, we see that the set

Ω = {K ∈ K(H) : K is norm-separable}

is Π1
1 and that the map K 7→ sup{|K|Dn : n ∈ N} is a Π1

1-rank on Ω.

Now let D be the Borel subset of SB×H defined in (2.2). For every X ∈ SB

the section DX = {f : (X, f) ∈ D} of D at X is compact and, by definition,

equals to the set KX . By Theorem A.14, the map Φ: SB → K(H) defined by

Φ(X) = KX is Borel. By property (P12) in Section 2.1.2, we see that

X ∈ SD⇔ Φ(X) = KX ∈ Ω.

That is, the map Φ is a Borel reduction of the set SD to Ω. By Fact A.8, it

follows that the set SD is Π1
1 and that the map

X 7→ sup{|KX |Dn : n ∈ N}

is a Π1
1-rank on SD. Using properties (P11) and (P12) in Section 2.1.2, it is easy

to see that for every X ∈ SD and every n ∈ N we have |KX |Dn = Sz1/n(BX∗).

Hence, invoking equality (2.6), we conclude that

sup{|KX |Dn : n ∈ N} = sup{Sz1/n(BX∗) : n > 1} = Sz(X).

The proof is completed.

2.3.4 The dual class of an analytic subset of SD

Let A be a subset of SD and consider the dual class A∗ of A defined by

A∗ = {Y ∈ SB : ∃X ∈ A with Y ∼= X∗}. (2.8)

We have the following estimate of the complexity of A∗.

Theorem 2.12. [D1] Let A be an analytic subset of SD. Then the dual class

A∗ of A is analytic.

As in Section 2.1.2, let H = (B`∞ ,w
∗). The proof of Theorem 2.12 is

based on the following selection result. It is the analogue of property (P2) in

Section 2.1.1 for the coding of the set {X∗ : X ∈ SB}.
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Proposition 2.13. [D1] Let S be a standard Borel space and let A ⊆ S ×H
be a Borel set such that for every s ∈ S the section As is nonempty, compact

and norm-separable. Then there exists a sequence fn : S → H (n ∈ N) of Borel

selectors of A such that for every s ∈ S the sequence
(
fn(s)

)
is norm dense in

the section As.

Let Dn : K(H)→ K(H) (n ∈ N) be the sequence of Borel derivatives defined

in Section 2.3.2. Let ε > 0, B ⊆ H and S ⊆ B. We say that S is norm ε-dense

in B if for every f ∈ B there exists h ∈ S with ‖f − h‖∞ 6 ε.

Lemma 2.14. Let S and A be as in Proposition 2.13. Also let n ∈ N and let

Ã ⊆ Z ×H be a Borel set with Ã ⊆ A and such that for every s ∈ S the section

Ãs is a (possibly empty) compact set. Then there exists a sequence hm : S → H

(m ∈ N) of Borel selectors of A such that for all s ∈ S, if the section Ãs is

nonempty, then the set {hm(s) : hm(s) ∈ Ãs \Dn(Ãs)} is nonempty and norm

ε-dense in Ãs \Dn(Ãs), where ε = (n+ 1)−1.

Proof. Let (Vm) be a countable basis of the topology of H consisting of non-

empty sets. Let m ∈ N be arbitrary. By Theorem A.14, we see that the set

Sm =
{
s ∈ S : Ãs ∩ Vm 6= ∅ and ‖ · ‖∞ − diam(Ãs ∩ Vm) 6

1

n+ 1

}
is Borel. We define Ãm ⊆ S ×H by the rule

(s, f) ∈ Ãm ⇔
(
s ∈ Sm and f ∈ Vm and (s, f) ∈ Ã

)
or(

s /∈ Sm and (s, f) ∈ A
)
.

The set Ãm is Borel with nonempty Kσ sections. By the Arsenin–Kunugui

theorem (see [Ke, Theorem 35.46]), there exists a Borel map hm : S → H such

that
(
s, hm(s)

)
∈ Ãm for all s ∈ S.

We claim that the sequence (hm) is the desired one. Clearly it is a sequence of

Borel selectors of A. What remains is to check that it has the desired property.

So, let s ∈ S such that Ãs is nonempty and let f ∈ Ãs \ Dn(Ãs). By the

definition of Dn, there exists m0 ∈ N such that s ∈ Sm0 and (s, f) ∈ Ãm0 .

Invoking the definition of Ãm0
we see that the set {g ∈ H : (s, g) ∈ Ãm0

} has

norm-diameter less than or equal to (n + 1)−1. Since (s, hm0
(s)) ∈ Ãm0

, we

conclude that ‖f − hm0
(s)‖∞ 6 (n+ 1)−1. The proof is completed.

We proceed to the proof of Proposition 2.13.

Proof of Proposition 2.13. Let A ⊆ S ×H be as in the statement of the propo-

sition. By Theorem A.14, the map ΦA : S → K(H) defined by ΦA(s) = As is

Borel, and so, the set {As : s ∈ S} is an analytic subset of K(H).
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Let n ∈ N. By Theorem A.11 and Lemma 2.10, the set

ΩDn = {K ∈ K(H) : D∞n (K) = ∅}

is Π1
1 and the map K 7→ |K|Dn is a Π1

1-rank on ΩDn . By our assumptions on

the set A and Lemma 2.9, we see that for every s ∈ S and for every ξ < ω1 if

Dξ
n(As) 6= ∅, then Dξ+1

n (As)  Dξ
n(As); thus, the sequence

(
Dξ
n(As) : ξ < ω1

)
of iterated derivatives of As must be stabilized at ∅. It follows, in particular,

that {As : s ∈ S} ⊆ ΩDn . By part (ii) of Theorem A.2, we obtain that

sup{|As|Dn : s ∈ S} = ξn < ω1.

Recursively, for every ξ < ξn we define Aξ ⊆ S ×H as follows. We set A0 = A.

If ξ = ζ + 1 is a successor ordinal, then we define Aξ by

(s, f) ∈ Aξ ⇔ f ∈ Dn

(
(Aζ)s

)
where (Aζ)s is the section {f : (s, f) ∈ Aζ} of Aζ at s. If ξ is limit, then let

(s, f) ∈ Aξ ⇔ (s, f) ∈
⋂
ζ<ξ

Aζ .

Claim 2.15. The following hold.

(i) For every ξ < ξn the set Aξ is a Borel subset of A with compact sections.

(ii) For every (s, f) ∈ S×H with (s, f) ∈ A there exists a unique ordinal ξ < ξn
such that (s, f) ∈ Aξ \Aξ+1, equivalently f ∈ (Aξ)s \Dn

(
(Aξ)s

)
.

Proof of Claim 2.15. (i) By induction on all ordinals less than ξn. For ξ = 0 it

is straightforward. If ξ = ζ + 1 is a successor ordinal, then, by our inductive

hypothesis and Theorem A.14, the map s 7→ (Aζ)s is Borel. By Lemma 2.10,

the map s 7→ Dn

(
(Aζ)s

)
is Borel too. By the definition of Aξ = Aζ+1 and

invoking Theorem A.14 once more, we conclude that Aξ is a Borel subset of A

with compact sections. If ξ is limit, then the desired properties are immediate

consequences of our inductive hypothesis and the definition of the set Aξ.

(ii) For every s ∈ S let ξs = |As|Dn 6 ξn. Notice that As is partitioned into

the disjoint sets
{
Dξ
n(As) \ Dξ+1

n (As) : ξ < ξs
}

. An easy induction shows

that (Aξ)s = Dξ
n(As) for every ξ < ξs. It follows that Dξ

n(As) \ Dξ+1
n (As) =

(Aξ)s \ (Aξ+1)s = (Aξ)s \Dn

(
(Aξ)s

)
. The claim is proved.

Let ξ < ξn. By part (i) of Claim 2.15, we may apply Lemma 2.14 for the

set Aξ and we obtain a sequence (hξm) of Borel selectors of A as described in

Lemma 2.14. Enumerate the family (hξm : ξ < ξn,m ∈ N) in a single sequence,

say as (fk). Clearly the sequence (fk) is a sequence of Borel selectors of A.
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Moreover, by part (ii) of the above claim and the properties of the sequence

obtained by Lemma 2.14, we see that for all s ∈ S the set {fk(s) : k ∈ N} is norm

ε-dense in As, where ε = (n + 1)−1. The result follows by applying the above

procedure for every n ∈ N. The proof of Proposition 2.13 is completed.

We are ready to give the proof of Theorem 2.12.

Proof of Theorem 2.12. Let A be an analytic subset of SD. By Theorem 2.11,

the set SD is co-analytic. Hence, by Lusin’s separation theorem (see [Ke, The-

orem 28.1]), there exists S ⊆ SD Borel with A ⊆ S. Define G ⊆ S ×H by

(X, f) ∈ G⇔ (X, f) ∈ D.

It follows, by properties (P10) and (P11) in Section 2.1.2, that G is a Borel set

such that for every X ∈ S the section GX of G at X is nonempty, compact and

norm-separable. By Proposition 2.13, we obtain a sequence fn : S → H (n ∈ N)

of Borel selectors of G such that for every X ∈ S the sequence
(
fn(X)

)
is norm

dense in the section GX . Notice that, by property (P12) in Section 2.1.2, for

every Y ∈ SB and every X ∈ S we have

Y ∼= X∗ ⇔ ∃(yn) ∈ Y N ∃k > 1 with span{yn : n ∈ N} = Y

and (yn) is k-equivalent to
(
fn(X)

)
.

For every k ∈ N with k > 1 the relation Ek in C(2N)N ×HN defined by(
(yn), (hn)

)
∈ Ek ⇔ (yn)

k∼ (hn)

is Borel. To see this notice that

(yn)
k∼ (hn) ⇔ ∀m ∀a0, . . . , am ∈ Q

(
∀l
∣∣ m∑
n=0

anhn(l)
∣∣ 6 k

∥∥ m∑
n=0

anyn
∥∥)

and
(
∀p ∃i 1

k

∥∥ m∑
n=0

anyn
∥∥− 1

p+ 1
6
∣∣ m∑
n=0

anhn(i)
∣∣).

The sequence (fn) consists of Borel functions. Therefore, the relation Ik in

C(2N)N × S defined by(
(yn), X

)
∈ Ik ⇔

(
(yn), (fn(X))

)
∈ Ek

is Borel. Finally, by property (P5) in Section 2.1.1, the relation R in SB×C(2N)N

defined by (
Y, (yn)

)
∈ R⇔ span{yn : n ∈ N} = Y

is Borel. Now let A∗ = {Y ∈ SB : ∃X ∈ A with Y ∼= X∗} be the dual class of

A. It follows by the above discussion that

Y ∈ A∗ ⇔ ∃X ∈ A ∃(yn) ∈ C(2N)N ∃k > 1 with
(
Y, (yn)

)
∈ R

and
(
(yn), X

)
∈ Ik.



2.4. THE CLASS NCX 23

Clearly the above formula gives an analytic definition of A∗. The proof of

Theorem 2.12 is completed.

2.4 The class NCX

Throughout this section X will be a Banach space with a Schauder basis. Con-

sider the set

NCX = {Y ∈ SB : X is not isomorphic to a subspace of Y }.

Particular cases are the classes NC`1 and NU consisting of all separable Banach

spaces not containing `1 and of all non-universal spaces, obtained by considering

X = `1 and X = C(2N) respectively.

As in the case of the class REFL, we will define a Borel map Ψ: NCX → Tr

such that

Y ∈ NCX ⇔ Ψ(Y ) ∈WF.

This will show that the set NCX is Π1
1 and that the map Y 7→ o

(
Ψ(Y )

)
is a

Π1
1-rank on NCX . The construction of the map Ψ is based on classical work of

Bourgain [Bou1].

Specifically, fix a normalized Schauder basis (en) of X. For every Y ∈ SB

and every δ > 1 we define a tree TNC(Y,X, (en), δ) on Y by the rule

(yn)ln=0 ∈ TNC(Y,X, (en), δ)⇔ (yn)ln=0 is δ-equivalent to (en)ln=0. (2.9)

The tree TNC(Y,X, (en), δ) describes all our attempts to produce a sequence

(yn) in Y which is δ-equivalent to (en). Notice that if 1 6 δ 6 δ′, then the

tree TNC(Y,X, (en), δ) is a downwards closed subtree of TNC(Y,X, (en), δ′).

Moreover, we have the simple, though basic, fact.

Lemma 2.16. [Bou1] For every Y ∈ SB we have that Y ∈ NCX if and only

if for every δ > 1 the tree TNC(Y,X, (en), δ) is well-founded.

Let dn : SB → C(2N) (n ∈ N) be the sequence of Borel maps described in

property (P2) in Section 2.1.1. For every Y ∈ SB and every k ∈ N with k > 1

we define a tree TNC(Y,X, (en), k) on N by the rule

(n0, . . . , nl) ∈ TNC(Y,X, (en), k)⇔
(
dn0

(Y ), . . . , dnl(Y )
)
∈ TNC(Y,X, (en), k).

We “glue” the sequence
(
TNC(Y,X, (en), k) : k > 1

)
of trees and we define a

tree TNC(Y,X, (en)) on N by the rule

kat ∈ TNC(Y,X, (en))⇔ k > 1 and t ∈ TNC(Y,X, (en), k). (2.10)

Arguing as in Lemma 2.4, it is easy to see that the map

SB 3 Y 7→ TNC

(
Y,X, (en)

)
∈ Tr
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is Borel. Using a perturbation argument, it also easily verified that

Y ∈ NCX ⇔ TNC

(
Y,X, (en)

)
∈WF.

This is the desired reduction. The above facts are summarized below.

Theorem 2.17. [Bos1] Let X be an infinite-dimensional Banach space with

a Schauder basis. Let (en) be a normalized Schauder basis of X. Then the set

NCX is Π1
1 and the map Y 7→ o

(
TNC(Y,X, (en))

)
is a Π1

1-rank on NCX .

We proceed to give an estimate of the order of the tree TNC(Y,X, (en)). First

we notice that for every Y ∈ NCX we have

o
(
TNC(Y,X, (en))

)
= sup

{
o
(
TNC(Y,X, (en), k)

)
: k > 1

}
+ 1.

Also observe that for every k ∈ N with k > 1 we have o
(
TNC(Y,X, (en), k)

)
6

o
(
TNC(Y,X, (en), k)

)
. Concerning the opposite inequality the following holds.

Lemma 2.18. Let Y ∈ NCX . Also let C > 1 and k ∈ N such that 2C2 6 k.

Then we have o
(
TNC(Y,X, (en), C)

)
6 o
(
TNC(Y,X, (en), k)

)
. In particular,

o
(
TNC(Y,X, (en))

)
= sup

{
o
(
TNC(Y,X, (en), δ)

)
: δ > 1

}
+ 1.

Proof. Let K > 1 be the basis constant of (en) and let (yn)ln=0 be a (finite)

sequence in Y which is C-equivalent to (en)ln=0. Also let (zn)ln=0 be a sequence

in Y such that ∥∥ yn
‖yn‖

− zn
∥∥ 6

1

2CK
· 1

2n+2

for every n ∈ {0, . . . , l}. We claim that (zn)ln=0 is 2C2-equivalent to (en)ln=0.

To see this, notice first C−1 6 ‖yn‖ 6 C for every l ∈ {0, . . . , l}. Hence, setting

wn = yn/‖yn‖, we see that (wn)ln=0 is normalized, C-equivalent to (yn)ln=0 and

with basis constant less than or equal to CK. By Proposition B.3, we obtain

that (zn)ln=0 is 2C2-equivalent to (en)ln=0.

Using the above observation and arguing as in the proof of Lemma 2.6, the

desired estimate follows. The proof is completed.

Finally, we notice the following stability properties of the above defined trees.

Proposition 2.19. Let X be a Banach space with a normalized Schauder basis

(en). Let Y,Z ∈ SB. Then the following are satisfied.

(i) If Y is isomorphic to Z, then o
(
TNC(Y,X, (en))

)
= o
(
TNC(Z,X, (en))

)
.

(ii) If Y is a subspace of Z, then o
(
TNC(Y,X, (en))

)
6 o
(
TNC(Z,X, (en))

)
.
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2.5 Coding basic sequences

As in the case of the class of separable Banach spaces and its natural coding SB,

one can develop a similar theory for basic sequences using as universal element

the canonical basis of Pe lczyński’s space.

In particular, let U be the universal space of Pe lczyński for basic sequences

and let (un) be its canonical Schauder basis described in Theorem 1.9. Every

seminormalized basic sequence (xn) in a Banach space X is equivalent to a

subsequence (uln) of (un). Hence, we may identify (xn) with the corresponding

set {l0 < l1 < · · · } of indices. Having this identification in mind, we consider

the set

S =
{
L = {l0 < l1 < · · · } ∈ [N]∞ : (uln) is shrinking

}
. (2.11)

For every L ∈ [N]∞ we set UL = span{un : n ∈ L}. The main result of this

section is the following theorem due to Bossard.

Theorem 2.20. [Bos3] The set S is Π1
1 and the map L 7→ Sz(UL) is a Π1

1-rank

on S.

Before we give the proof of Theorem 2.20 we need, first, to present some

preliminary results which are of independent interest.

2.5.1 The convergence rank γ

Let E be a compact metrizable space, let (Y, ρ) be a complete metric space (not

necessarily separable) and let fn : E → Y (n ∈ N) be a sequence of continuous

functions. For every K ∈ K(E) and every n ∈ N by fn|K we shall denote the

restriction of fn on K. Consider the set

K = {K ∈ K(E) : (fn|K) is pointwise convergent}.

It is easy to see that the set K is Π1
1. As in [KL], we will define a canonical

Π1
1-rank on K based on classical work of Zalcwasser [Za], and Gillespie and

Hurwicz [GH]. To this end, we fix a countable basis (Vm) of E consisting of

nonempty open sets. For every n,m ∈ N define Γn,m : K(E)→ K(E) by

Γn,m(K) =


K \ Vm : K ∩ Vm 6= ∅ and ∃i ∈ N ∀k > l > i ∀x ∈ K ∩ Vm

we have ρ
(
fk(x), fl(x)

)
6 1

n+1

K : otherwise.

Notice that Γn,m is a derivative on K(E). Now define Γn : K(E) → K(E)

by Γn(K) =
⋂
m Γn,m(K). That is, Γn(K) results by removing from K all

nonempty relatively open subsets of K on which the sequence (fn) is ε-uniformly

convergent for some 0 < ε < (n + 1)−1. Clearly Γn is derivative on K(E).

Moreover, arguing as in Lemma 2.10, we have the following lemma.
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Lemma 2.21. For every n ∈ N the map Γn is Borel.

By Theorem A.11 and Lemma 2.21, the set

ΩΓ = {K ∈ K(E) : Γ∞n (K) = ∅ ∀n ∈ N}

is Π1
1 and the map

K 7→ γ(K) := sup{|K|Γn : n ∈ N} (2.12)

is a Π1
1-rank on ΩΓ. Finally notice that ΩΓ = K. To see this let K ∈ K(E) be

arbitrary. If K /∈ K, then clearly K /∈ ΩΓ. Conversely, assume that K /∈ ΩΓ.

There exist n ∈ N and P ∈ K(E) with P ⊆ K and Γn(P ) = P . For every i ∈ N
let Pi =

{
x ∈ P : ∃k, l ∈ N with k > l > i and ρ

(
fk(x), fl(x)

)
> (n + 1)−1

}
.

By the fact that Γn(P ) = P , we see that Pi is dense in P . Moreover, Pi is

open as the sequence (fn) consists of continuous functions. Hence, there exists

z ∈ P ⊆ K with z ∈ Pi for all i ∈ N. It follows that the sequence
(
fn(z)

)
is not

Cauchy in (Y, ρ) and so K /∈ K.

By the above discussion, we conclude that the set K is Π1
1 and that the map

K 7→ γ(K) is a Π1
1-rank on K.

2.5.2 Subsequences spanning complemented subspaces

For the proof of Theorem 2.20 it will be convenient not to consider all subse-

quences of (un) but only those for which the natural projection has norm one.

Specifically, for every L ∈ [N]∞ let PL : U → UL be the natural projection

and set

C = {L ∈ [N]∞ : PL has norm one}.

Clearly C is a closed subset of [N]∞. We set SC = S ∩ C. That is, SC consists

of all L = {l0 < l1 < · · · } for which the sequence (uln) is shrinking and the

projection PL onto UL has norm one. Theorem 2.20 is essentially consequence

of the following result.

Proposition 2.22. [Bos3] The set SC is a Π1
1 subset of C and the map

L 7→ Sz(UL) is a Π1
1-rank on SC.

Let U∗ be the dual of U and let (u∗n) be the bi-orthogonal functionals associ-

ated to (un). For every L ∈ C let ZL be the weak* closure of span{u∗n : n ∈ L}.
The spaces U∗L and ZL are isometric and weak* isomorphic via the operator

T : U∗L → ZL defined by

T (x∗)(u) = x∗
(
PL(u)

)
for every u ∈ U.

Hence, we may identify the space U∗L with the subspace ZL of U∗ (this is the

reason why we consider sequences in C). Notice that L ∈ SC if and only if ZL
is equal to span{u∗n : n ∈ L}.
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For every n ∈ N let Pn denote the natural projection from U onto the space

Un = span{uk : k 6 n}. The operator P ∗n : U∗ → U∗ defined by

P ∗n(u∗)(u) = u∗
(
Pn(u)

)
for every u ∈ U

is weak* continuous and satisfies P ∗n(u∗k) = u∗k if k 6 n and P ∗n(u∗k) = 0 if k > n.

Since the range of P ∗n is finite-dimensional, the map P ∗n is continuous from

(U∗,w∗) to (U∗, ‖·‖). Applying the analysis in Section 2.5.1 for E = (BU∗ ,w
∗),

(Y, ρ) = (U∗, ρ‖·‖) and the sequence (fn) = (P ∗n), we see that the set

K = {K ∈ K(E) : (P ∗n |K) is pointwise convergent}

is Π1
1 and that the map K 7→ γ(K) = sup{|K|Γn : n ∈ N} is a Π1

1-rank on K.

We proceed to the proof of Proposition 2.22.

Proof of Proposition 2.22. In what follows let E = (BU∗ ,w
∗). For every L ∈ C

let BZL be the closed unit ball of the subspace ZL of U∗. The map Φ: C→ K(E)

defined by Φ(L) = BZL is easily seen to be Borel. Notice that

L ∈ SC ⇔ ZL = span{u∗n : n ∈ L}
⇔ (P ∗n) is pointwise convergent on BZL

⇔ Φ(L) ∈ K.

That is, the map Φ is a Borel reduction of SC to K. By Fact A.8, the set SC is

Π1
1 and the map L 7→ γ(BZL) is a Π1

1-rank on SC.

We have already remarked that for every L ∈ C the spaces U∗L and ZL are

isometric and weak* isomorphic. Hence, by the analysis in Section 2.3.2 applied

for Z = U , we see that Sz(UL) = sup{|BZL |Dn : n ∈ N}. So the proof will be

completed once we show that for every L ∈ SC we have

sup{|BZL |Γn : n ∈ N} = sup{|BZL |Dn : n ∈ N}.

The above equality is a consequence of the following claims.

Claim 2.23. Let L ∈ SC and K ∈ K(E) with K ⊆ BZL . Also let n,m ∈ N with

7(m+ 1) 6 n+ 1. Then Dm(K) ⊆ Γn(K). In particular, |BZL |Dm 6 |BZL |Γn .

Proof of Claim 2.23. We fix x∗ ∈ Dm(K) and we set ε = 6−1 · (m + 1)−1. Let

i ∈ N and let V be a weak* open subset of U∗ with x∗ ∈ V . The basic sequence

(un)n∈L is shrinking as L ∈ SC, and so, there exists l ∈ N with l > i and such

that ‖P ∗l (x∗) − x∗‖ 6 ε. The map P ∗l : (U∗,w∗) → (U∗, ‖ · ‖) is continuous.

Hence, there exists a weak* open subset W of V with x∗ ∈ W and such that

‖P ∗l (y∗)− x∗‖ 6 ε for every y∗ ∈ W . By the fact that x∗ ∈ Dm(K), we obtain

that ‖ · ‖ − diam(W ∩K) > (m+ 1)−1 = 6ε. Thus, we may select z∗ ∈W ∩K
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with ‖z∗− x∗‖ > 3ε. Invoking again the fact that (un)n∈L is shrinking, we find

k > l such that ‖P ∗k (z∗)− z∗‖ 6 ε. It follows that

3ε 6 ‖x∗ − z∗‖ 6 ‖x∗ − P ∗l (z∗)‖+ ‖P ∗l (z∗)− P ∗k (z∗)‖+ ‖P ∗k (z∗)− z∗‖
6 2ε+ ‖P ∗k (z∗)− P ∗l (z∗)‖

and so ‖P ∗k (z∗) − P ∗l (z∗)‖ > ε. Summarizing, we see that for every weak*

open subset V of U∗ with x∗ ∈ V and every i ∈ N there exist k > l > i and

z∗ ∈ V ∩K such that

‖P ∗k (z∗)− P ∗l (z∗)‖ > ε =
1

6(m+ 1)
>

1

n+ 1
.

This shows that x∗ ∈ Γn(K) and so Dm(K) ⊆ Γn(K). Finally, the fact that

|BZL |Dm 6 |BZL |Γn follows by a straightforward transfinite induction taking

into account that Dm(K) ⊆ Γn(K) for everyK ⊆ BZL . The claim is proved.

Claim 2.24. Let L ∈ SC and K ∈ K(E) with K ⊆ BZL . Also let n,m ∈ N with

3(m+ 1) 6 n+ 1. Then Γm(K) ⊆ Dn(K). In particular, |BZL |Γm 6 |BZL |Dn .

Proof of Claim 2.24. For notational convenience we set δ = (n + 1)−1. We

fix x∗ ∈ K \ Dn(K). It is enough to show that x∗ /∈ Γm(K). To this end

we argue as follows. By the definition of the derivative Dn, there exists a

weak* open subset V of U∗ such that ‖ · ‖ − diam(V ∩ K) 6 δ. The basic

sequence (un)n∈L is shrinking since L ∈ SC. Hence, we may find i ∈ N such

that ‖P ∗k (x∗) − P ∗l (x∗)‖ 6 δ for every k, l ∈ N with k > l > i. The basis (un)

of U is bi-monotone and so ‖Pn‖ = ‖P ∗n‖ = 1 for every n ∈ N. For every

y∗ ∈ V ∩K we have ‖x∗ − y∗‖ 6 δ. It follows that

‖P ∗k (y∗)− P ∗l (y∗)‖ 6 ‖P ∗k (y∗)− P ∗k (x∗)‖+ ‖P ∗k (x∗)− P ∗l (x∗)‖+

+ ‖P ∗l (x∗)− P ∗l (y∗)‖ 6 3δ.

Summarizing, we see that there exist a weak* open subset V of U∗ with x∗ ∈ V
and i ∈ N such that for every k, l ∈ N with k > l > i and every y∗ ∈ V ∩K we

have

‖P ∗k (y∗)− P ∗l (y∗)‖ 6 3δ =
3

n+ 1
6

1

m+ 1
.

Hence, x∗ /∈ Γm(K). Finally, the inequality |BZL |Dn 6 |BZL |Γm follows by

transfinite induction and the previous discussion. The claim is proved.

By Claims 2.23 and 2.24, we conclude that for every L ∈ SC we have

sup{|BZL |Γn : n ∈ N} = sup{|BZL |Dn : n ∈ N}. The proof of Proposition 2.22

is completed.
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2.5.3 Proof of Theorem 2.20

We are ready to give the proof of Theorem 2.20. To this end, for every L ∈ [N]∞

let (un)n∈L be the subsequence of (un) determined by L. Consider the relation

∼ on [N]∞ × [N]∞ defined by

L ∼M ⇔ (un)n∈L is equivalent to (un)n∈M .

It is easy to see that ∼ is Fσ. By Theorem 1.9, for every M ∈ [N]∞ there exists

L ∈ C with M ∼ L. Moreover, by Proposition 2.22, the set SC is Π1
1. Hence,

M ∈ S ⇔ ∀L ∈ [N]∞ we have (L ∈ C and L ∼M ⇒ L ∈ SC)

and so S is Π1
1. The map L 7→ Sz(UL) is a Π1

1-rank on SC. By Fact A.3, there

are relations 6Σ, <Σ⊆ C× C in Σ1
1 such that for every L ∈ SC we have

(M ∈ SC) and Sz(UM ) 6 Sz(UL)⇔M 6Σ L

and

(M ∈ SC) and Sz(UM ) < Sz(UL)⇔M <Σ L.

By part (i) of Theorem 2.8, for every M,L ∈ [N]∞ with M ∼ L we have

Sz(UM ) = Sz(UL). It follows that for every L ∈ S we have

Sz(UM ) 6 Sz(UL) ⇔ (M ∈ S) and Sz(UM ) 6 Sz(UL)

⇔ ∃M ′, L′ ∈ C (M ′ ∼M and L′ ∼ L and M ′ 6Σ L′)

and

Sz(UM ) < Sz(UL) ⇔ (M ∈ S) and Sz(UM ) < Sz(UL)

⇔ ∃M ′, L′ ∈ C (M ′ ∼M and L′ ∼ L and M ′ <Σ L′).

Invoking Fact A.3 again, we see that the map L 7→ Sz(UL) is a Π1
1 rank on S.

The proof of Theorem 2.20 is completed.

We close this section with the following lemma. It shows that the coding of

basic sequences is compatible with SB.

Lemma 2.25. The following hold.

(i) If A ⊆ [N]∞ is Σ1
1, then so is the set {X ∈ SB : ∃L ∈ A with X ∼= UL}.

(ii) If A ⊆ SB is Σ1
1, then so is the set {L ∈ [N]∞ : ∃X ∈ A with UL ∼= X}.

In particular, the subset S of SB consisting of all spaces with a Schauder basis

is analytic.

Proof. We identify Pe lczyński’s space U with one of its isometric copies in C(2N).

Noticing that the map [N]∞ 3 L 7→ UL ∈ SB is Borel and invoking property

(P7) in Section 2.1.1, parts (i) and (ii) follow. The proof is completed.
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2.6 Applications

This section is devoted to applications of the machinery developed in this chap-

ter. We will encounter later on several other applications. The ones that follow

are just a sample of the power and elegance of descriptive set theoretic tech-

niques in the study of classical problems in Banach space theory.

A. An old problem in Banach space theory asked whether there exists a space X

with separable dual which is universal for all Banach spaces with separable dual.

Szlenk [Sz] answered this in the negative. Bourgain considerably strengthened

Szlenk’s result by showing that if a separable Banach space Y is universal for

all separable reflexive spaces, then Y must contain C(2N), and so, it is universal

for all separable Banach spaces (see [Bou1]). Bourgain arrived to this result

by an “overspill argument”. In particular, for every space X with a normalized

Schauder basis (en) he constructed a family {Rξ(X) : ξ < ω1} of reflexive spaces

with a Schauder basis such that for every countable ordinal ξ it holds that

sup
{
o
(
TNC(Rξ(X), X, (en), δ)

)
: δ > 1

}
> ξ. (2.13)

Considering X = C(2N) we see that every separable space Y that contains every

Rξ(X) must also contain C(2N). Bossard refined Bourgain’s result as follows.

Theorem 2.26. [Bos3] Let A be an analytic subset of SB such that for every

X ∈ REFL there exists Z ∈ A with X ∼= Z. Then there exists Y ∈ A which is

universal.

Bossard arrived to Theorem 2.26 by a “reduction argument”. Specifically, he

defined a Borel map Φ: Tr → SB such that Φ(T ) is reflexive if T ∈ WF, while

Φ(T ) is universal if T ∈ IF. In particular, if A∼= is the isomorphic saturation of

A, then the set Φ−1(A∼=) is an analytic subset of Tr that contains WF. Since

WF is not analytic, there exist T ∈ IF and Y ∈ A such that Φ(T ) ∼= Y . By the

properties of Φ, the space Y is universal.

We will give an alternative approach to Theorem 2.26 based on Bourgain’s

construction and on the machinery developed in Section 2.4.

Proof of Theorem 2.26. Let X be a separable Banach space with a normalized

Schauder basis (en). Let A∼= = {Y ∈ SB : ∃X ∈ A with Y ∼= X} be the

isomorphic saturation of A. By property (P7) in Section 2.1.1, the equivalence

relation ∼= of isomorphism is Σ1
1 in SB × SB. Hence A∼= is analytic. We claim

that A∼= * NCX ; in other words, we claim that there exists Y ∈ A that contains

an isomorphic copy of X.

Assume not. By Theorem 2.17, the map Y 7→ o
(
TNC(Y,X, (en))

)
is a

Π1
1-rank on NCX . As A∼= is Σ1

1, by part (ii) of Theorem A.2 (i.e., boundedness),

there exists a countable ordinal ζ such that

sup
{
o
(
TNC(Y,X, (en))

)
: Y ∈ A∼=

}
< ζ.



2.6. APPLICATIONS 31

Clearly Rζ(X) ∈ A∼=. Hence, by Lemma 2.18 and (2.13), we see that

o
(
TNC(Rζ(X), X, (en))

)
> sup

{
o
(
TNC(Rζ(X), X, (en), δ)

)
: δ > 1

}
+ 1 > ζ

and we arrived to a contradiction. Therefore, there exists Y ∈ A with Y /∈ NCX .

Applying the above for X = C(2N) the result follows. The proof of Theorem

2.26 is completed.

B. Let X be a Banach space with a Schauder basis and let Y ∈ NCX . If (en)

and (zn) are two equivalent normalized Schauder bases of X, then clearly

o
(
TNC(Y,X, (en))

)
= o
(
TNC(Y,X, (zn))

)
.

However, by a result of Pe lczyński and Singer [PS], there exist uncountable

many non-equivalent normalized Schauder bases of X. Hence it is not clear

whether the quantity

sup
{
o
(
TNC(Y,X, (en))

)
: (en) is normalized Schauder basis of X

}
is bounded below ω1. In other words, it is not clear whether the quantity

o
(
TNC(Y,X, (en))

)
depends on the choice of the basis (en). We will show that

it is independent of such a choice in a very strong sense.

Theorem 2.27. [AD] Let X be a Banach space with a Schauder basis. Then

there exists a Π1
1-rank φX : NCX → ω1 on NCX such that for every Y ∈ NCX

and every normalized Schauder basis (en) of X we have

φX(Y ) > o
(
TNC(Y,X, (en))

)
.

Proof. Consider the set

B = {(en) ∈ XN : (en) is a normalized Schauder basis of X}.

Then B is a Borel subset of XN. To see this notice first that, by property (P8)

in Section 2.1.1, the set NBX of all normalized basic sequences in X is Borel.

On the other hand, the subset D of XN consisting of all sequences in X with

dense linear span is Borel (in fact, Fσδ) since

(xn) ∈ D ⇔ ∀k ∀m ∃a0, . . . , al ∈ Q with
∥∥dk − l∑

n=0

anxn
∥∥ 6

1

m+ 1

where (dk) is a fixed dense sequence in X. Observing that B = NBX ∩ D we

conclude that B is Borel.

For every Y ∈ SB and every (en) ∈ B let TNC(Y,X, (en)) be the tree on N
defined in (2.10). The map

SB×B 3
(
Y, (en)

)
7→ TNC

(
Y,X, (en)

)
∈ Tr
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is easily seen to be Borel. It follows that the set A ⊆ SB× Tr defined by

(Y, T ) ∈ A⇔ ∃(en) ∈ B with T = TNC

(
Y,X, (en)

)
is analytic. Notice that for every Y ∈ SB we have that Y ∈ NCX if and only

if the section AY = {T : (Y, T ) ∈ A} of A at Y is a subset of WF. We apply

Theorem A.5 and we obtain a Borel map f : SB→ Tr as described in Theorem

A.5. We define φX(Y ) = o
(
f(Y )

)
. It is easy to see that φX is as desired. The

proof is completed.

C. Recall that an infinite-dimensional Banach space X is said to be minimal

if it embeds in all of its infinite-dimensional subspaces. The classical sequence

spaces c0 and `p (1 6 p <∞) as well as the dual of Tsirelson’s space (see [CS]

and [Ts]) are minimal spaces.

Now let X be a separable Banach space. If Y, Z ∈ NCX , then we cannot

always expect that Y ⊕Z ∈ NCX . For instance, consider the case X = `1 ⊕ `2,

Y = `1 and Z = `2. On the other hand, if X is a minimal Banach space, then

it is easy to see that for every pair Y,Z ∈ NCX we have Y ⊕ Z ∈ NCX . By

a classical result of Rosenthal (see [Ro1] or [Ro4, Theorem 4.10]), the same is

also true for the space X = C(2N). We will give a special name for the class of

spaces sharing this property, as follows.

Definition 2.28. [AD] Let X be a separable Banach space. We say that X

has property (S) if for every Y,Z ∈ NCX we have that Y ⊕ Z ∈ NCX .

It is natural to ask, as it was done in [BRS, Problem 8, page 227] for the

spaces C(2N) and `2, whether for every Banach space X with property (S)

and with a normalized Schauder basis (en), and for every pair Y,Z ∈ NCX
we can control the order of the tree TNC(Y ⊕ Z,X, (en)) from the order of the

corresponding trees TNC(Y,X, (en)) and TNC(Z,X, (en)). We have the following

theorem which answers this question positively.

Theorem 2.29. Let X be a Banach space with property (S) and with a nor-

malized Schauder basis (en). Then there exists a map φX : ω1 × ω1 → ω1 such

that for every ξ, ζ < ω1 and every Y,Z ∈ NCX with o
(
TNC(Y,X, (en))

)
= ξ and

o
(
TNC(Z,X, (en))

)
= ζ we have

o
(
TNC(Y ⊕ Z,X, (en))

)
6 φX(ξ, ζ).

Proof. We define the map φX as follows. Fix two countable ordinals ξ and ζ.

By Theorem 2.17, the map Y 7→ TNC(Y,X, (en)) is a Π1
1-rank on NCX . By

part (i) of Theorem A.2, the sets

A =
{
Y ∈ NCX : o

(
TNC(Y,X, (en))

)
= ξ
}
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and

B =
{
Z ∈ NCX : o

(
TNC(Z,X, (en))

)
= ζ
}

are Borel. Let C(2N)⊕1C(2N) be the vector space C(2N)×C(2N) equipped with

the norm ‖(f, g)‖ = ‖f‖+ ‖g‖. The map S : SB× SB→ Subs
(
C(2N)⊕1 C(2N)

)
defined by S(Y, Z) = Y ⊕1 Z is easily seen to be Borel. It follows that the set

C = {W ∈ SB : ∃Y ∈ A ∃Z ∈ B with W ∼= Y ⊕1Z}

is an analytic subset of SB. The space X has property (S), and so, C ⊆ NCX .

By part (ii) of Theorem A.2, there exists a countable ordinal η such that

sup
{
o
(
TNC(W,X, (en))

)
: W ∈ C

}
6 η.

We set φX(ξ, ζ) = η. Clearly fX is as desired. The proof is completed.

2.7 Comments and Remarks

1. Although descriptive set theoretic tools have been extensively used in Banach

space theory, especially after the seminal work of Jean Bourgain in the 1980s,

Bossard was the first to formalize the appropriate setting in his Thesis [Bos1],

written under the supervision of Gilles Godefroy. As we have already mentioned,

the coding SB of the class of separable Banach spaces was defined and analyzed

in [Bos1]. There are other natural ways to code the class of separable Banach

spaces, but they all lead to the same results. The coding we presented (that is,

the coding SB) is, by now, standardized. The paper [Bos3] of Bossard contains

a detailed discussion of these issues as well as a large part of the results obtained

in [Bos1].

2. The list of classes REFL, UC, SD and NCX is by no means exhaustive. Ac-

tually, almost every natural class of separable Banach spaces has been analyzed

and its complexity has been calculated (see [AD] and [Bos3] for more details).

3. The Π1
1-rank on REFL presented in Section 2.2 is taken from [AD]. Previ-

ously, Bossard has shown [Bos1] that REFL is co-analytic but not Borel.

4. Szlenk defined his index in [Sz] and used it to show that if a separable Banach

space X contains every separable reflexive space, then X∗ is non-separable. The

original definition in [Sz] is slightly different from the one given in Section 2.3.1.

However, they both coincide for spaces not containing `1. The fact that the

Szlenk index is a Π1
1-rank on SD is due to Bossard [Bos1]. Theorem 2.12 and

Proposition 2.13 are taken from [D1]. We notice that Theorem 2.12 is not valid

for the pre-dual class A∗ = {Y ∈ SB : ∃X ∈ A with Y ∗ ∼= X} of an analytic

subset A of SB. A counterexample is the set A = {X ∈ SB : X ∼= `1} (that is,

the isomorphic class of `1).
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5. As we have mentioned, the Π1
1-rank on NCX presented in Section 2.4 is

based on the work of Bourgain in [Bou1]. Bossard has extended this rank for

the case of an arbitrary separable Banach space and not merely for a space X

with a Schauder basis (see [Bos3]). Theorems 2.27 and 2.29 are still valid in

this more general setting (see [AD]).

6. The coding of basic sequences as subsequences of the basis of Pe lczyński’s

space is taken from [Bos1]. There is a version of Theorem 2.20 for boundedly

complete sequences, also due to Bossard.

Proposition 2.30. [Bos3] The set

BC =
{
L = {l0 < l1 < · · · } ∈ [N]∞ : (uln) is boundedly complete

}
is Π1

1 and the map L 7→ Sz
(
(UL)∗

)
is a Π1

1-rank on BC.

Proposition 2.30 is derived by Theorem 2.20 and duality arguments (see [Bos1]

or [Bos3] for more details).

7. Beside the work Szlenk [Sz] and Bourgain [Bou1], there are several other

results in the literature which can be called “anti-universality” results. For

instance, Bourgain has shown in [Bou2] that if a separable Banach space X

contains every C(K) space with K countable compact, then X must be univer-

sal. In the same spirit again, Argyros [Ar] has strengthened Bourgain’s result

from [Bou1] by showing that if a separable Banach space X contains every sepa-

rable reflexive hereditarily indecomposable space, then X must still be universal.

There is also a version of Theorem 2.26 in the spirit of the results obtained in

[Ar] (see [AD]).

We point out that isometric versions of various universality problems have

been also considered. For instance, Godefroy and Kalton [GK] have shown that

if a separable Banach space X contains an isometric copy of every separable

strictly convex Banach space, then X is isometrically universal for all separable

Banach spaces.

8. Theorem 2.27 as well as Definition 2.28 are taken from [AD]. Theorem

2.29 is new and answers a natural question concerning the, so-called, “Bourgain

indices”. It is open whether the map φX can be computed even for the simplest

case X = `2.

9. We notice that the coding SB turned out to be a very efficient tool in

renorming theory (see, for instance, the work of Lancien [La]). An excellent

survey of these developments can be found in [G].



Chapter 3

The `2 Baire sum

In this chapter we will present the notion of a Schauder tree basis and the

construction of an `2 Baire sum, both introduced in [AD].

Schauder tree bases will serve as technical devices for producing universal

spaces for certain classes of Banach spaces. Their critical rôle will be revealed

in Chapter 7.

To every Schauder tree basis we associate its `2 Baire sum. It is a separable

Banach space that contains, in a natural way, an isomorphic copy of every space

in the class coded by the Schauder tree basis. The main goal achieved by this

construction is that it provides us with an efficient “gluing” procedure. However,

there is a price we have to pay. Namely, the `2 Baire sum contains subspaces

which are “orthogonal” to all spaces in that class. Most of the material in this

chapter is devoted to the study of these subspaces.

3.1 Schauder tree bases

Definition 3.1. [AD] Let X be a Banach space, Λ a countable set, T a pruned

B-tree on Λ and (xt)t∈T a normalized sequence in X (with possible repetitions)

which is indexed by the tree T . We say that X = (X,Λ, T, (xt)t∈T ) is a Schauder

tree basis if the following are satisfied.

(1) X = span{xt : t ∈ T}.

(2) For every σ ∈ [T ] the sequence (xσ|n)n>1 is a bi-monotone basic sequence.

We recall that a B-tree T on Λ is a downwards closed subset of Λ<N consisting

of nonempty finite sequences (see Section 1.2); equivalently, T is a B-tree on Λ

if T ∪ {∅} is a tree on Λ.

35
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For every Schauder tree basis X = (X,Λ, T, (xt)t∈T ) and every σ ∈ [T ] we

set

Xσ = span{xσ|n : n > 1}. (3.1)

Notice that in Definition 3.1 we do not assume that the subspace Xσ of X is

complemented. Also notice that if σ, τ ∈ [T ] with σ 6= τ , then this does not

necessarily imply that Xσ 6= Xτ . Let us give some examples of Schauder tree

bases.

Example 3.1. Consider a Banach space X with a normalized bi-monotone

Schauder basis (en). We set Λ = N and T = Σ, where by Σ we denote the

B-tree on N consisting of all nonempty finite strictly increasing sequences in N
(see Section 1.2). Notice that for all t ∈ Σ we have |t| > 1. We define xt = e|t|−1

for every t ∈ Σ. Then X = (X,N,Σ, (xt)t∈Σ) is a Schauder tree basis. Observe

that Xσ = X for every σ ∈ [Σ].

Example 3.2. As in Example 3.1, let X be a Banach space with a normalized

bi-monotone Schauder basis (en). For every t ∈ Σ set mt = max{n : n ∈ t}
and define xt = emt . Again we see that X = (X,N,Σ, (xt)t∈Σ) is a Schauder

tree basis. Notice that for every σ ∈ [Σ] the sequence (xσ|n)n>1 is just a

subsequence of (en). Conversely, for every subsequence (eln) of (en) there exists

a (unique) branch σ ∈ [Σ] such that (xσ|n)n>1 is the subsequence (eln). That

is, X = (X,N,Σ, (xt)t∈Σ) is obtained by “spreading” all subsequences of (en)

along the branches of Σ.

3.2 The `2 Baire sum of a Schauder tree basis

Definition 3.2. [AD] Let X = (X,Λ, T, (xt)t∈T ) be a Schauder tree basis. The

`2 Baire sum of X, denoted by TX
2 , is defined to be the completion of c00(T )

equipped with the norm

‖z‖TX
2

= sup
{( l∑

i=0

∥∥∑
t∈si

z(t)xt
∥∥2

X

)1/2}
(3.2)

where the above supremum is taken over all finite families (si)
l
i=0 of pairwise

incomparable segments of T .

Let X = (X,Λ, T, (xt)t∈T ) be a Schauder tree basis. Let us gather some

basic properties of the space TX
2 associated to X.

A. We denote by (et)t∈T the standard Hamel basis of c00(T ). We fix a bijection

hT : T → N such that for every t, s ∈ T with t @ s we have hT (t) < hT (s).

We enumerate the tree T as (tn) according to the bijection hT . If (etn) is

the corresponding enumeration of (et)t∈T , then the sequence (etn) defines a
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normalized bi-monotone Schauder basis of TX
2 . For every x ∈ TX

2 by supp(x) we

denote the support of x, i.e., the set {t ∈ T : x(t) 6= 0}. The range of x, denoted

by range(x), is the minimal interval I of N such that supp(x) ⊆ {tn : n ∈ I}.
We isolate, for future use, the following simple fact.

Fact 3.3. Let I be an interval of N, let s be a segment of T and let R be a

segment complete subset of T . Then the following hold.

(i) The set s′ = s ∩ {tn : n ∈ I} is a segment of T .

(ii) The subset R′ = R ∩ {tn : n ∈ I} of T is segment complete.

B. For every σ ∈ [T ] set Xσ = span{eσ|n : n > 1}. The space Xσ is isometric

to Xσ. Let Pσ : TX
2 → Xσ be the natural projection. Then Pσ is a norm-

one projection. We notice the following consequence of the enumeration of T

according to hT . If (xn) is a block sequence in TX
2 , then the sequence

(
Pσ(xn)

)
is also block in Xσ.

C. More generally, let S be a segment complete subset of T and consider the

subspace XS = span{et : t ∈ S} of TX
2 . Let PS : TX

2 → XS be the natural

projection. Again we see that PS is a norm-one projection.

D. Let X be a Schauder tree basis such that for every σ ∈ [T ] the sequence

(xσ|n)n>1 is unconditional. Then the basis (etn) of TX
2 is unconditional.

Let Y be a subspace of TX
2 . Assume that there exist σ ∈ [T ] and a further

subspace Y ′ of Y such that the operator Pσ : Y ′ → Xσ is an isomorphic embed-

ding. In this case, the subspace Y “contains information” about the Schauder

tree basis X. On the other hand, there are subspaces of TX
2 which are “or-

thogonal” to every Xσ. These subspaces are naturally distinguished into three

categories, as follows.

Definition 3.4. [AD] Let X = (X,Λ, T, (xt)t∈T ) be a Schauder tree basis and

let Y be a subspace of TX
2 .

(1) We say that Y is X-compact if for every σ ∈ [T ] the operator Pσ : Y → Xσ
is compact.

(2) We say that Y is X-singular if for every σ ∈ [T ] the operator Pσ : Y → Xσ
is strictly singular.

(3) We say that Y is weakly X-singular if for every finite A ⊆ [T ] the operator

PTA : Y → XTA is not an isomorphic embedding.

We recall that, following the notation introduced in Section 1.2, for every

A ⊆ [T ] by TA we denote the B-tree generated by A, that is,

TA = {σ|n : σ ∈ A and n > 1}.

The following simple fact relates the above notions.
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Proposition 3.5. Let X = (X,Λ, T, (xt)t∈T ) be a Schauder tree basis and let

Y be a subspace of TX
2 . Then the following are satisfied.

(i) If Y is X-compact, then Y is X-singular.

(ii) If Y is X-singular, then Y is weakly X-singular.

Proof. Part (i) is straightforward. To see part (ii) let Y be an X-singular

subspace of TX
2 and let A be an arbitrary finite subset of [T ]. Consider the B-tree

TA generated by A. Notice that there exist final segments s0, . . . , sk of T and a

finite-dimensional subspace F of TX
2 such that XTA ∼= F ⊕

∑k
n=0⊕Xsn . Hence,

by Lemma B.6, if the operator PTA : Y → XTA was an isomorphic embedding,

then there would existed σ ∈ A and a subspace Y ′ of Y such that the operator

Pσ : Y ′ → Xσ is an isomorphic embedding too. This clearly contradicts our

assumptions on the space Y . Hence, the operator PTA : Y → XTA is not an

isomorphic embedding and, therefore, Y is weakly X-singular. The proof is

completed.

The converse of part (ii) of Proposition 3.5 is far from being true. For

instance, while every subspace of an X-singular subspace (respectively, of an

X-compact subspace) is also X-singular (respectively, X-compact), this is not

the case for weakly X-singular subspaces. We notice, however, that if Y is a

weakly X-singular subspace and Y ′ is a finite co-dimensional subspace of Y ,

then Y ′ is also weakly X-singular.

The rest of this chapter will be devoted to the structure of TX
2 and its

subspaces. Among the basic results obtained in this direction is the fact that

every X-singular subspace Y of TX
2 contains no `p for 1 6 p < 2.

3.3 Weakly null sequences in TX
2

In what follows let X = (X,Λ, T, (xt)t∈T ) denote a Schauder tree basis. This

section is devoted to the proof of the following result.

Theorem 3.6. [AD] Let (xn) be a bounded block sequence in TX
2 . Assume that

Pσ(xn)
w→ 0 in Xσ for every σ ∈ [T ]. Then (xn) is weakly null.

We need some preliminary results which will play a decisive rôle in the

analysis of the space TX
2 .

3.3.1 General lemmas

We start with the following lemma.
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Lemma 3.7. [AD] Let (xn) be a bounded block sequence in TX
2 . Also let ε > 0

and L ∈ [N]∞. Then there exist finite A ⊆ [T ] and M ∈ [L]∞ such that

lim supn∈M ‖Ps(xn)‖ < ε for every segment s of T with s ∩ TA = ∅.

Proof. Let s be a finite segment of T . As the sequence (xn) is block we see that

‖Ps(xn)‖ → 0. Hence, if s is segment of T such that lim supn∈M ‖Ps(xn)‖ > ε

for some M ∈ [L]∞, then s must be a final segment of T .

Now assume, towards a contradiction, that the lemma is false. Using the

above observation we may construct, recursively, a decreasing sequence (Mi) of

infinite subsets of L and a sequence (si) of mutually different final segments of

T such that

‖Psi(xn)‖ > ε

2
for every i ∈ N and every n ∈Mi. (3.3)

Let C = sup{‖xn‖ : n ∈ N} < +∞. We select k0 ∈ N such that k0 > 4C2 · ε−2.

As the final segments s0, . . . , sk0
are different, there exists an l0 ∈ N such that

if we set s′i = {t ∈ si : |t| > l0} for every i ∈ {0, . . . , k0}, then the family

{s′0, . . . , s′k0
} becomes a collection of pairwise incomparable final segments of T .

We select n0 ∈ Mk0
such that for every i ∈ {0, . . . , k0} and every t ∈ si ∩

supp(xn0
) we have |t| > l0. This is possible since the sequence (xn) is block.

It follows that ‖Psi(xn0)‖ = ‖Ps′i
(xn0)‖ for every i ∈ {0, . . . , k0}. Since the

segments (s′i)
k0
i=0 are pairwise incomparable, by the definition of the norm of TX

2

and (3.3) above, we see that

C > ‖xn0‖ >
( k0∑
i=0

‖Ps′i
(xn0)‖2

)1/2

=
( k0∑
i=0

‖Psi(xn0)‖2
)1/2

>

√
k0
ε2

4
> C.

This is clearly a contradiction. The proof is completed.

The following lemma provides a strong quantitative refinement of the con-

clusion of Lemma 3.7.

Lemma 3.8. [AD] Let (xn) be a bounded block sequence in TX
2 . Also let ε > 0

and let A be a finite (possibly empty) subset of [T ] such that lim sup ‖Ps(xn)‖ < ε

for every segment s of T with s∩ TA = ∅. Then there exists L ∈ [N]∞ such that

for every segment s of T with s∩TA = ∅ we have |{n ∈ L : ‖Ps(xn)‖ > ε}| 6 1.

Proof. Assume, towards a contradiction, that the lemma is false. Then for

every L ∈ [N]∞ there exist (n0, n1) ∈ [L]2 and a segment s with s∩ TA = ∅ and

‖Ps(xni)‖ > ε for i ∈ {0, 1}. By Ramsey’s theorem [Ra], there exists L ∈ [N]∞

such that for every (n0, n1) ∈ [L]2 there exists such a segment s. Hence, by

passing to a subsequence of (xn) if necessary, we may assume that for every

n, k ∈ N with n < k there exists a segment sn,k of T with sn,k ∩ TA = ∅ and

such that ‖Psn,k(xn)‖ > ε and ‖Psn,k(xk)‖ > ε.
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Let k ∈ N with k > 1. For every n < k let on = min{|t| : t ∈ sn,k∩supp(xk)}
and set s′n,k = {t ∈ sn,k : |t| < on}. Clearly s′n,k is a segment of T with

s′n,k ∩ TA = ∅. The sequence (xn) is block and so sn,k ∩ supp(xn) ⊆ s′n,k for

every n < k. In fact, s′n,k is just the maximal initial subsegment of sn,k that

does not intersect supp(xk). Hence ‖Ps′n,k
(xn)‖ > ε for every n < k. Let

C = sup{‖xn‖ : n ∈ N} < +∞.

Claim 3.9. For every k > 1 we have |{s′n,k : n < k}| 6 dC2/ε2e.

Proof of Claim 3.9. Let s0, . . . , sl−1 be an enumeration of the set in question.

For every i ∈ {0, . . . , l − 1} there exists ni < k such that si = s′ni,k. We set

s′′i = {t ∈ sni,k : |t| > oni} = sni,k \ s′ni,k. Notice that s′′i is a segment of T with

s′′i ∩ TA = ∅ and supp(xk) ∩ sni,k ⊆ s′′i for every i ∈ {0, . . . , l − 1}. It follows

that ‖Ps′′i
(xk)‖ > ε. We observe the following. Since the segments (si)

l−1
i=0 are

mutually different, the segments (s′′i )l−1
i=0 are pairwise incomparable. Hence,

C > ‖xk‖ >
( l−1∑
i=0

‖Ps′′i
(xk)‖2

)1/2

>
√
l · ε

which gives the desired estimate. The claim is proved.

We set M = dC2/ε2e. By Claim 3.9, for every k > 1 there exists a family

{si,k : i = 0, . . . ,M − 1} of segments of T with si,k ∩ TA = ∅ and such that for

every n < k there exists i ∈ {0, . . . ,M − 1} with ‖Psi,k(xn)‖ > ε. By passing to

subsequences, we may assume that si,k → si in 2Λ<N
for every i ∈ {0, . . . ,M−1}.

Notice that every si, if nonempty, is a segment of T with si ∩ TA = ∅.
Let n, k ∈ N with n < k and i ∈ {0, . . . ,M−1}. We say that k is i-good for n

if ‖Psi,k(xn)‖ > ε. Observe that for every n ∈ N there exists i ∈ {0, . . . ,M − 1}
such that the set Hi

n = {k > n : k is i-good for n} is infinite. Hence there exist

i0 ∈ {0, . . . ,M − 1} and L ∈ [N]∞ such that Hi0
n is infinite for every n ∈ L.

Since si0,k → si0 in 2Λ<N
, we see that ‖Psi0

(xn)‖ > ε for every n ∈ L. Therefore,

lim sup ‖Psi0
(xn)‖ > ε.

Moreover, we have si0 ∩TA = ∅, and so, we have arrived to a contradiction. The

proof of Lemma 3.8 is completed.

By Lemma 3.8, we have the following lemma.

Lemma 3.10. [AD] Let (xn) be a bounded block sequence in TX
2 . Also let ε > 0

and let A be a finite (possibly empty) subset of [T ] such that lim sup ‖Ps(xn)‖ < ε

for every segment s of T with s∩ TA = ∅. Then for every L ∈ [N]∞ there exists

a vector w which is a finite convex combination of {xn : n ∈ L} such that

‖Ps(w)‖ 6 2ε for every segment s of T with s ∩ TA = ∅.
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Proof. Fix L ∈ [N]∞. Applying Lemma 3.8, we obtain an infinite subset M

of L such that |{n ∈ M : ‖Ps(xn)‖ > ε}| 6 1 for every segment s of T with

s ∩ TA = ∅. Let M = {m0 < m1 < · · · } and C = sup{‖xn‖ : n ∈ N} < +∞.

We select k0 ∈ N such that C · (k0 + 1)−1 < ε and we define

w =
xm0 + · · ·+ xmk0

k0 + 1
.

Then for every segment s of T with s ∩ TA = ∅ we have

‖Ps(w)‖ 6 1

k0 + 1
·
k0∑
i=0

‖Ps(xmi)‖ 6
C + εk0

k0 + 1
6 2ε.

The proof is completed.

We isolate, for future use, the following corollaries of Lemmas 3.7, 3.8

and 3.10 respectively.

Corollary 3.11. Let (xn) be a bounded block sequence in TX
2 . Also let ε > 0

and L ∈ [N]∞. Then there exist finite A ⊆ [T ] and M ∈ [L]∞ such that

lim supn∈M ‖Pσ(xn)‖ < ε for every σ ∈ [T ] \A.

Corollary 3.12. Let (xn) be a bounded block sequence in TX
2 . Also let ε > 0

such that lim sup ‖Pσ(xn)‖ < ε for every σ ∈ [T ]. Then there exists L ∈ [N]∞

such that |{n ∈ L : ‖Pσ(xn)‖ > ε}| 6 1 for every σ ∈ [T ].

Corollary 3.13. Let (xn) be a bounded block sequence in TX
2 . Also let ε > 0

such that lim sup ‖Pσ(xn)‖ < ε for every σ ∈ [T ]. Then for every L ∈ [N]∞

there exists a vector w which is a finite convex combination of {xn : n ∈ L}
such that ‖Pσ(w)‖ 6 2ε for every σ ∈ [T ].

3.3.2 Sequences satisfying an upper `2 estimate

The final ingredient of the proof of Theorem 3.6 is the following lemma.

Lemma 3.14. [AD] Let (wn) be a bounded block sequence in TX
2 . Assume that

for every n ∈ N with n > 1 and every σ ∈ [T ] we have

‖Pσ(wn)‖ 6 1∑n−1
i=0 |supp(wi)|1/2

· 1

22n
. (3.4)

Then the sequence (wn) satisfies an upper `2 estimate. That is, there exists a

constant M > 1 such that for every k ∈ N and every a0, . . . , ak ∈ R we have

∥∥ k∑
n=0

anwn
∥∥
TX

2
6M

( k∑
n=0

a2
n

)1/2

.

In particular, the sequence (wn) is weakly null.
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Proof. Let C = sup{‖wn‖ : n ∈ N} < +∞. Let k ∈ N and a0, . . . , ak ∈ R with∑k
n=0 a

2
n = 1. We will show that

∥∥∑k
n=0 anwn

∥∥ 6
√

2C2 + 4. This will finish

the proof.

To this end, let (sj)
l
j=0 be an arbitrary collection of pairwise incompara-

ble segments of T . We may assume that for every j ∈ {0, . . . , l} there exists

n ∈ {0, . . . , k} such that sj ∩ supp(wn) 6= ∅. Recursively, we define a partition

(In)kn=0 of {0, . . . , l} by the rule

I0 =
{
j ∈ {0, . . . , l} : sj ∩ supp(w0) 6= ∅

}
I1 =

{
j ∈ {0, . . . , l} \ I0 : sj ∩ supp(w1) 6= ∅

}
...

Ik =
{
j ∈ {0, . . . , l} \

( k−1⋃
n=0

In

)
: sj ∩ supp(wk) 6= ∅

}
.

The segments (sj)
l
j=0 are pairwise incomparable and a fortiori disjoint. It follows

that

|In| 6 |supp(wn)| for every n ∈ {0, . . . , k}. (3.5)

Also notice that for every 0 6 n < m 6 k we have∑
j∈Im

‖Psj (wn)‖ = 0. (3.6)

Let n ∈ {0, . . . , k} and j ∈ In. We shall estimate the quantity

‖Psj (a0w0 + · · ·+ akwk)‖ (3.6)
= ‖Psj (anwn + · · ·+ akwk)‖

6 |an| · ‖Psj (wn)‖+

k∑
i=n+1

|ai| · ‖Psj (wi)‖.

Since the Schauder basis (et)t∈T of TX
2 is bi-monotone, by (3.4), we see that

for every i ∈ {n + 1, . . . , k} we have ‖Psj (wi)‖ 6 |supp(wn)|−1/2 · 2−2i, and

moreover, |ai| 6 1. Hence,

‖Psj (a0w0 + · · ·+ akwk)‖ 6 |an| · ‖Psj (wn)‖+
1

|supp(wn)|1/2
·

k∑
i=n+1

1

22i

(3.5)

6 |an| · ‖Psj (wn)‖+
1

|In|1/2
· 1

2n
.

Notice that for every n ∈ {0, . . . , k} we have
∑
j∈In ‖Psj (wn)‖2 6 ‖wn‖2 6 C2



3.3. WEAKLY NULL SEQUENCES IN TX
2 43

as the family (sj)j∈In consists of pairwise incomparable segments. Therefore,∑
j∈In

‖Psj (a0w0 + · · ·+ akwk)‖2 6
∑
j∈In

(
|an| · ‖Psj (wn)‖+

1

|In|1/2
· 1

2n

)2

6 2a2
n

∑
j∈In

‖Psj (wn)‖2 + 2
∑
j∈In

1

|In|
· 1

2n

6 2a2
nC

2 +
2

2n
.

It follows that

k∑
n=0

∑
j∈In

‖Psj (a0w0 + · · ·+ akwk)‖2 6 2C2
k∑

n=0

a2
n +

k∑
n=0

2

2n
6 2C2 + 4.

The family (sj)
l
j=0 was arbitrary and so

∥∥∑k
n=0 anwn

∥∥2
6 2C2 + 4. The proof

is completed.

3.3.3 Proof of Theorem 3.6

We are ready to give to the proof of Theorem 3.6. We will argue by contradic-

tion. So, assume that there exists a bounded block sequence (xn) in TX
2 such

that
(
Pσ(xn)

)
is weakly null in Xσ for every σ ∈ [T ], while (xn) is not weakly

null in TX
2 . In this case, there exist x∗ ∈ (TX

2 )∗, ε > 0 and L ∈ [N]∞ such that

x∗(xn) > ε for every n ∈ L. By repeated applications of Corollary 3.11, we may

construct, recursively, a decreasing sequence (Mk) of infinite subsets of L and

an increasing sequence (Ak) of finite subsets of [T ] such that for every k ∈ N and

every σ ∈ [T ] \ Ak we have lim supn∈Mk
‖Pσ(xn)‖ 6 2−k. We set A =

⋃
k Ak.

Clearly A is countable. Let M ∈ [L]∞ be such that M \Mk is finite for every

k ∈ N. Notice that limn∈M ‖Pσ(xn)‖ = 0 for every σ ∈ [T ] \ A. Also observe

that for every convex block sequence (yn) of (xn)n∈M and every σ ∈ [T ] \ A
we have that lim sup ‖Pσ(yn)‖ = 0. Using this observation, our assumptions,

Mazur’s theorem and a diagonal argument, we may construct a block sequence

(yn) of (xn) such that

(a) each vector yn is a finite convex combination of (xn)n∈M and

(b) lim ‖Pσ(yn)‖ = 0 for every σ ∈ [T ].

Notice that, by property (a) above, we have

(c) x∗(yn) > ε for every n ∈ N.

By repeated applications of Corollary 3.13, we may construct, recursively, a

block sequence (wn) of finite convex combinations of (yn) such that for every
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n ∈ N with n > 1 and every σ ∈ [T ] we have

‖Pσ(wn)‖ 6 1∑n−1
i=0 |supp(wi)|1/2

· 1

22n
.

Observe that the sequence (wn) is bounded. Hence, by Lemma 3.14, the se-

quence (wn) is weakly null. On the other hand, by (c) above, we have that

x∗(wn) > ε for every n ∈ N. This is clearly a contradiction. The proof of

Theorem 3.6 is completed.

3.4 Weakly X-singular subspaces

This section is devoted to the study of the weakly X-singular subspaces of an

`2 Baire sum. We start by noticing the following fact. It is an immediate

consequence of Definition 3.4.

Fact 3.15. Let Y be a block subspace of TX
2 . Assume that Y is weakly

X-singular. Then for every finite A ⊆ [T ] there exists a normalized block se-

quence (yn) in Y such that ‖Pσ(yn)‖ → 0 for every σ ∈ A.

The basic property of a weakly X-singular subspace Y of TX
2 is given in the

following proposition.

Proposition 3.16. [AD] Let Y be a block subspace of TX
2 . Assume that Y

is weakly X-singular. Then for every ε > 0 there exists a normalized block

sequence (yn) in Y such that lim sup ‖Pσ(yn)‖ < ε for every σ ∈ [T ].

Proof. The proof is a quest of a contradiction. So, suppose that there ex-

ist a weakly X-singular block subspace Y of TX
2 and ε > 0 such that for

every normalized block sequence (yn) in Y there exists σ ∈ [T ] such that

lim sup ‖Pσ(yn)‖ > ε. Let p ∈ N and r > 0 to be determined later.

We start with a normalized block sequence (y0
n) in Y . By our assumptions,

there exist σ0 ∈ [T ] and L0 ∈ [N]∞ such that ‖Pσ0
(y0
n)‖ > ε/2 for every n ∈ L0.

By Lemma 3.7, there exist M0 ∈ [L0]∞ and finite A0 ⊆ [T ] such that for

every segment s of T with s ∩ TA0 = ∅ we have lim supn∈M0
‖Ps(y

0
n)‖ < r. By

Lemma 3.8, there exists N0 ∈ [M0]∞ such that for every segment s of T with

s ∩ TA0
= ∅ we have |{n ∈ N0 : ‖Ps(y

0
n)‖ > r}| 6 1. Summing up, we obtain

σ0 ∈ [T ], finite A0 ⊆ [T ] and N0 ∈ [N]∞ such that

(a) ‖Pσ0(y0
n)‖ > ε/2 for every n ∈ N0, and

(b) if s is a segment with s ∩ TA0 = ∅, then |{n ∈ N0 : ‖Ps(y
0
n)‖ > r}| 6 1.

By Fact 3.15, there exists a normalized block sequence (y1
n) in Y such that

‖Pσ(y1
n)‖ → 0 for every σ ∈ A0 ∪{σ0}. By our assumption that the proposition
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is false, there exists σ1 ∈ [T ] such that lim sup ‖Pσ1(y1
n)‖ > ε. Arguing as above,

we may select finite A1 ⊆ [T ] and N1 ∈ [N]∞ such that for every segment s of T

with s∩TA1
= ∅ we have |{n ∈ N1 : ‖Ps(y

1
n)‖ > r}| 6 1. Since ‖Pσ(y1

n)‖ → 0 for

every σ ∈ A0∪{σ0}, we can select A1 and σ1 so that (A1∪{σ1})∩(A0∪{σ0}) = ∅.
We proceed recursively up to p.

For every i ∈ {0, . . . , p} we enumerate the sequence (yin)n∈Ni as (zin) accord-

ing to the increasing enumeration of Ni. Also let Gi = Ai ∪ {σi}. By the prop-

erties of the above construction, we have Gi ∩Gj = ∅ for every i, j ∈ {0, . . . , p}
with i 6= j. Every Gi is finite. Hence, there exists l0 ∈ N such that if we

restrict every τ ∈
⋃p
i=0Gi after the l0-level of T , then this collection of final

segments becomes a collection of pairwise incomparable final segments. Thus,

setting Ti = {τ |n : n > l0 and τ ∈ Gi} for all i ∈ {0, . . . , p}, we see that for

every i, j ∈ {0, . . . , p} with i 6= j and every t ∈ Ti and s ∈ Tj , the nodes t and

s are incomparable.

The sequence (zin) is block. Hence, for every i ∈ {0, . . . , p} we may select a

subsequence (uin) of (zin) such that the following are satisfied.

(c) For every n ∈ N and every pair i, j ∈ {0, . . . , p} with i < j we have that

max{l : l ∈ range(uin)} < min{l : l ∈ range(ujn)}.

(d) If n < n′, then max{l : l ∈ range(uin)} < min{l : l ∈ range(ujn′)} for every

i, j ∈ {0, . . . , p}.

(e) For every τ ∈ Gi and every t ∈ supp(uin) with t @ τ we have |t| > l0.

For every n ∈ N we define

wn = u0
n + · · ·+ upn. (3.7)

Notice that, by property (d), the sequence (wn) is block.

Let n ∈ N be arbitrary. By (a), (c) and (e) above, for every i ∈ {0, . . . , p}
we may select a segment sin of T such that

(f) sin ⊆ {σi|k : k > l0} ∩ {tk : k ∈ range(uin)}, and

(g) ‖Psin
(uin)‖ > ε/2.

Using (c), (e), (f) and (g), it is easy to see that

‖wn‖ >
( p∑
i=0

‖Psin
(uin)‖2

)1/2

>
ε

2

√
p+ 1. (3.8)

Finally for every n ∈ N we define

yn =
wn
‖wn‖

(3.9)
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Clearly (yn) is a normalized block sequence in Y . We will show that for an

appropriate choice of p and r we have lim sup ‖Pσ(yn)‖ 6 ε/2 for every σ ∈ [T ].

This is clearly a contradiction.

To this end, let σ ∈ [T ] be arbitrary. Notice that there exists at most one

jσ ∈ {0, . . . , p} with the property that there exists t ∈ Tjσ with t @ σ. For this

particular jσ we have the trivial estimate ‖Pσ(ujσn )‖ 6 1 for every n ∈ N.

Now fix i ∈ {0, . . . , p} with i 6= jσ. Then every node t in Ti is not an initial

segment of σ. We set

si = {σ|k : k > 1} \ TGi = {σ|k : k > 1} \ {τ |n : n > 1 and τ ∈ Gi}.

Notice, first, that si is a final segment of σ. Also notice that si is nonempty.

Indeed, our assumption that every node t in Ti is not an initial segment of σ,

simply reduces to the fact that si contains the final segment {σ|k : k > l0}.
The sequence (uin) is block, and so, we may select ki ∈ N such that ‖Pσ(uin)‖ =

‖Psi(u
i
n)‖ for every n > ki. Since Ai ⊆ Gi, the definition of si ensures that

si ∩ TAi = ∅. Hence, by property (b) above, we see that there exists ni ∈ N
(clearly depending on σ) such that ‖Psi(u

i
n)‖ < r for every n > ni. We set

nσ = max
{
ki + ni : i ∈ {0, . . . , p} and i 6= jσ

}
. By the above discussion, for

every n > nσ we have

‖Pσ(wn)‖ = ‖Pσ(u0
n + · · ·+ upn)‖ 6 1 + pr. (3.10)

Combining inequalities (3.8) and (3.10), it follows that for every n > nσ

‖Pσ(yn)‖ =
∥∥Pσ( wn

‖wn‖

)∥∥ 6 2
1 + pr

ε
√
p+ 1

. (3.11)

If we select p and r satisfying p+ 1 > 36 · ε−4 and r < (2p)−1, then we see that

lim sup ‖Pσ(yn)‖ 6 ε/2 for every σ ∈ [T ] and, therefore, we have reached the

desired contradiction. The proof is completed.

The main result of this section is a functional analytic characterization of

weakly X-singular block subspaces of TX
2 . To state it, we need first to introduce

the following variant of Definition 3.2.

Definition 3.17. [DL] Let X = (X,Λ, T, (xt)t∈T ) be a Schauder tree basis.

The c0 Baire sum of X, denoted by TX
0 , is defined to be the completion of c00(T )

equipped with the norm

‖z‖TX
0

= sup
{∥∥∑

t∈s
z(t)xt

∥∥
X

: s is a segment of T
}
. (3.12)

By I : TX
2 → TX

0 we shall denote the natural inclusion operator.

We have the following theorem.
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Theorem 3.18. Let X = (X,Λ, T, (xt)t∈T ) be a Schauder tree basis and let Y

be a block subspace of TX
2 . Then the following are equivalent.

(i) The subspace Y is weakly X-singular.

(ii) The operator I : Y → TX
0 is not an isomorphic embedding.

(iii) There exists a block subspace Z of Y such that the operator I : Z → TX
0 is

compact.

Proof. The equivalence between (ii) and (iii) is relatively easy. Indeed, the

implication (iii)⇒(ii) is straightforward. Conversely, observe that if the operator

I : Y → TX
0 is not an isomorphic embedding, then for every finite co-dimensional

subspace Y ′ of Y the operator I : Y ′ → TX
0 is not an isomorphic embedding. By

Proposition B.5, we see that (ii) implies (iii).

The implication (ii)⇒(i) is also easy. To see this let Y be a block subspace

of TX
2 which is not weakly X-singular. By definition, there exists finite A ⊆ [T ]

such that the operator PTA : Y → XTA is an isomorphic embedding. Noticing

that the operator I : XTA → TX
0 is also an isomorphic embedding, our claim

follows.

We work now to prove that (i) implies (ii). We will argue by contradiction.

So, assume that Y is a weakly X-singular block subspace of TX
2 such that the

operator I : Y → TX
0 is an isomorphic embedding. There exists a constant C > 0

such that for every y ∈ Y we have

C · ‖y‖TX
2

6 ‖y‖TX
0

6 ‖y‖TX
2
. (3.13)

We fix k0 ∈ N and ε > 0 satisfying

k0 >
64

C4
and ε < min

{C
2
,

1

k0

}
. (3.14)

By our assumptions, we may apply Proposition 3.16 to the block subspace Y of

TX
2 and the chosen ε. It follows that there exists a normalized block sequence

(yn) in Y such that lim sup ‖Pσ(yn)‖ < ε for every σ ∈ [T ]. By Corollary 3.12

and by passing to a subsequence of (yn) if necessary, we may additionally assume

that for every σ ∈ [T ] we have |{n ∈ N : ‖Pσ(yn)‖ > ε}| 6 1. Since the basis of

TX
2 is bi-monotone, we may strengthen this property to the following one.

(a) For every segment s of T we have |{n ∈ N : ‖Ps(yn)‖ > ε}| 6 1.

By Fact 3.3 and (3.13), for every n ∈ N we may select a segment sn of T such

that

(b) ‖Psn(yn)‖ > C and sn ⊆ {tk : k ∈ range(yn)}.

As the sequence (yn) is block, we see that such a selection guarantees that
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(c) ‖Psn(ym)‖ = 0 for every n,m ∈ N with n 6= m.

For every n ∈ N let tn be the v-minimum node of sn. Applying the classical

Ramsey theorem, we find an infinite subset L = {l0 < l1 < l2 < · · · } of N such

that one of the following (mutually exclusive) cases must occur.

Case 1: The set {tn : n ∈ L} is an antichain. Our hypothesis in this case

implies that for every n,m ∈ L with n 6= m the segments sn and sm are

incomparable. We define z = yl0 + · · ·+ ylk0
. Since the family (sli)

k0
i=0 consists

of pairwise incomparable segments of T , we obtain that

‖z‖ >
( k0∑
i=0

‖Psli
(z)‖2

)1/2 (c)
=
( k0∑
i=0

‖Psli
(yli)‖2

)1/2 (b)

> C
√
k0 + 1. (3.15)

Now set w = z/‖z‖ ∈ Y . Invoking property (a) above, inequality (3.15) and

the choice of k0 and ε made in (3.14), for every segment s of T we have

‖Ps(w)‖ 6 1 + k0ε

C
√
k0 + 1

<
C

2
.

It follows that

‖w‖TX
0

6
C

2

which contradicts inequality (3.13). Hence this case is impossible.

Case 2: The set {tn : n ∈ L} is a chain. Let τ ∈ [T ] be the branch of T

determined by the infinite chain {tn : n ∈ L}. By property (a) above and by

passing to an infinite subset of L if necessary, we may assume that ‖Pτ (yn)‖ < ε

for every n ∈ L. The basis of TX
2 is bi-monotone, and so, we have the following

property.

(d) If s is a segment of T with s ⊆ τ , then ‖Ps(yn)‖ < ε for every n ∈ L.

We set s′n = sn \ τ . Observe that the set s′n is a sub-segment of sn. Notice that

sn is the disjoint union of the successive segments sn ∩ τ and s′n. Hence, by

properties (b) and (d) above and the choice of ε, we see that

‖Ps′n
(yn)‖ > C − ε > C

2
(3.16)

for every n ∈ L. Also notice that if n,m ∈ L with n 6= m, then the segments s′n
and s′m are incomparable. We set

z = yl0 + · · ·+ ylk0
and w =

z

‖z‖
.

Arguing precisely as in Case 1 and using the estimate in (3.16), we conclude

that

‖w‖TX
0

6
C

2
.

This is again a contradiction. The proof is completed.
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We close this section by recording the following straightforward consequence

of Theorem 3.18.

Corollary 3.19. Let X = (X,Λ, T, (xt)t∈T ) be a Schauder tree basis and let

Y be a block subspace of TX
2 . Assume that Y is weakly X-singular. Then for

every ε > 0 and every k ∈ N there exists a finitely supported vector y in Y

with ‖y‖ = 1, k < min{n : n ∈ range(y)} and such that ‖Ps(y)‖ 6 ε for every

segment s of T .

3.5 X-singular subspaces

In this section we continue our analysis of the subspaces of an `2 Baire sum by

focusing on the class of its X-singular subspaces. We start with the following

observation.

Fact 3.20. Let (tn) be an infinite antichain of T . Then the sequence (etn) is

1-equivalent to the standard basis of `2 and the subspace span{etn : n ∈ N}
spanned by the sequence (etn) is X-singular.

This fact is generalized as follows.

Proposition 3.21. [Ar] Let X = (X,Λ, T, (xt)t∈T ) be a Schauder tree basis

and let S be an infinite, well-founded, downwards closed B-subtree of T . Then

the space XS = span{et : t ∈ S} is hereditarily `2 (that is, every subspace Y of

XS contains an isomorphic copy of `2).

Proof. The proof proceeds by transfinite induction on the order o(S) of S. If

o(S) = 1, then the result is trivial since the space XS is isometric to `2. Let

ξ < ω1 and assume that the result has been proved for every B-subtree S′ of

T with o(S′) < ξ. Let S be a well-founded B-subtree of T with o(S) = ξ. Set

A = {λ ∈ Λ : (λ) ∈ S} and for every λ ∈ A set Sλ = {t ∈ S : (λ) v t}. Also let

Y be an arbitrary subspace of XS . If for every λ ∈ A the operator PSλ : Y → XSλ
is strictly singular, then using a standard sliding hump argument, we may find a

subspace Y ′ of Y which is isomorphic to `2. If not, then there exist λ ∈ A and a

subspace Y ′ of Y such that the map PSλ : Y ′ → XSλ is an isomorphic embedding.

Using our inductive hypothesis, we may easily find a further subspace Y ′′ of Y

which is isomorphic to `2. The proof is completed.

The structure of an arbitrary X-singular subspace of TX
2 (and not merely of

those spanned by well-founded subtrees of the basis) is more complicated. In

particular we have the following theorem.

Theorem 3.22. [AD] Let X = (X,Λ, T, (xt)t∈T ) be a Schauder tree basis.

Assume that the B-tree T contains a perfect subtree. Then there exists an

X-singular subspace of TX
2 which is isomorphic to c0.
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Proof. By passing to a subtree of T (not necessarily downwards closed), we may

assume that T is the tree 4<N; that is, every t ∈ T has exactly four immediate

successors in T . So, for every n ∈ N the n-level T (n) = {t ∈ T : |t| = n} of T

has 4n nodes. We define

yn =
∑

t∈T (n)

1

2n
et.

It is easy to see that (yn) is a normalized bi-monotone basic sequence. Let

Y = span{yn : n ∈ N}. Observe that Y is an X-singular subspace of TX
2 . We

claim that (yn) is equivalent to the standard basis of c0. This will finish the

proof.

To this end, let k ∈ N and a0, . . . , ak ∈ R with max{|an| : n = 0, . . . , k} = 1.

We will show that
∥∥∑k

n=0 anyn
∥∥ 6 2 which implies that (yn) is 2-equivalent to

the standard unit vector basis of c0. We start with the following observation.

Let s be a segment of T and set os = min{|t| : t ∈ s}. Notice that

∥∥Ps

( k∑
n=0

anyn

)∥∥ 6
k∑

n=os

|an| · ‖Ps(yn)‖ 6
k∑

n=os

1

2n
6 2

1

2os
.

Now let (sj)
l
j=0 be an arbitrary collection of pairwise incomparable segments

of T . For every j ∈ {0, . . . , l} set oj = min{|t| : t ∈ sj}. Write the set

{oj : j = 0, . . . , l} in increasing order as i0 < i1 < · · · < im (notice that m 6 l).

For every p ∈ {0, . . . ,m} let Ip =
{
j ∈ {0, . . . , l} : oj = ip

}
. The family (Ip)

m
p=0

forms a partition of {0, . . . , l}. We claim that

|I0|
4i0

+
|I1|
4i1

+ · · ·+ |Im|
4im

6 1. (3.17)

Indeed, notice that every node t in T (ip) has exactly 4im−ip successors in T (im).

Since the family consists of pairwise incomparable segments, we see that

4im−i0 |I0|+ 4im−i1 |I1|+ · · ·+ 4im−im−1 |Im−1|+ |Im| 6 4im

which gives the desired estimate. Now observe that

( l∑
j=0

∥∥Psj

( k∑
n=0

anyn

)∥∥2
)1/2

6 2 ·
( l∑
j=0

1

4oj

)1/2

= 2 ·
( m∑
p=0

|Ip|
4ip

)1/2

6 2

where the last inequality follows by (3.17). The proof is completed.

Theorem 3.22 essentially shows that we cannot control the structure of an

arbitrary X-singular subspace of TX
2 . Actually, it can be shown that there exists

a Schauder tree basis X = (X,Λ, T, (xt)t∈T ) such that for every p ∈ [2,+∞)

there exists an X-singular subspace Y of TX
2 which is isomorphic to `p. However,

we have the following result.
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Theorem 3.23. [DL] Let X = (X,Λ, T, (xt)t∈T ) be a Schauder tree basis and

let Y be an X-singular subspace of TX
2 . Then for every normalized basic se-

quence (xn) in Y there exists a normalized block sequence (yn) of (xn) satisfying

an upper `2 estimate.

In particular, every X-singular subspace Y of TX
2 contains no `p for any

1 6 p < 2.

Proof. Let Y be an X-singular subspace of TX
2 and let (xn) be a normalized

basic sequence in Y . A standard sliding hump argument allows us to construct

a normalized block sequence (vn) of (xn) and a block sequence (zn) in TX
2 such

that, setting Z = span{zn : n ∈ N}, the following are satisfied.

(a) The sequences (vn) and (zn) are equivalent.

(b) The subspace Z of TX
2 is block and X-singular.

By part (ii) of Proposition 3.5 and (b) above, we see that Z is a weakly

X-singular subspace. Hence, using Corollary 3.19, we may construct, recur-

sively, a normalized block sequence (wn) of (zn) such that for every n ∈ N with

n > 1 and every σ ∈ [T ] we have

‖Pσ(wn)‖ 6 1∑n−1
i=0 |supp(wi)|1/2

· 1

22n
.

By Lemma 3.14, the sequence (wn) satisfies an upper `2 estimate. Let (bn) be

the block sequence of (vn) corresponding to (wn). Observe that, by (a) above,

the sequence (bn) is seminormalized and satisfies an upper `2 estimate. The

property of being a block sequence is transitive, and so, (bn) is a block sequence

of (xn) as well. Hence, setting yn = bn/‖bn‖ for every n ∈ N, we see that the

sequence (yn) is the desired one.

Finally, to see that every X-singular subspace of TX
2 can contain no `p for

any 1 6 p < 2 we argue by contradiction. So, assume that Y is an X-singular

subspace of TX
2 containing an isomorphic copy of `p0

for some 1 6 p0 < 2.

There exists, in this case, a normalized basic sequence (xn) in Y which is equiv-

alent to the standard unit vector basis (en) of `p0
. Let (yn) be a normalized

block sequence of (xn) satisfying an upper `2 estimate. Since every normalized

block sequence of (en) is equivalent to (en) (see [LT, Proposition 2.a.1]), we

see that there exist constants C > c > 0 such that for every k ∈ N and every

a0, . . . , ak ∈ R we have

c ·
( k∑
n=0

|an|p0

)1/p0

6
∥∥ k∑
n=0

anyn
∥∥
TX

2
6 C ·

( k∑
n=0

|an|2
)1/2

.

This is clearly a contradiction. The proof is completed.
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We close this section by presenting a characterization of X-singular sub-

spaces. It is the analogue of Theorem 3.18 for this class of subspaces of TX
2 .

Theorem 3.24. [DL] Let X = (X,Λ, T, (xt)t∈T ) be a Schauder tree basis and

let Y be a subspace of TX
2 . Then the following are equivalent.

(i) Y is an X-singular subspace of TX
2 .

(ii) The operator I : Y → TX
0 is strictly singular.

Proof. It is clear that (ii) implies (i). Hence we only need to show the converse

implication. We argue by contradiction. So, assume that Y is an X-singular

subspace of TX
2 such that the operator I : Y → TX

0 is not strictly singular. Then

there exists a further subspace Y ′ of Y such that the operator I : Y ′ → TX
0 is

an isomorphic embedding. Using a standard sliding hump argument, we may

select, recursively, a normalized basic sequence (yn) in Y ′ and a normalized block

sequence (zn) in TX
2 such that, setting Z = span{zn : n ∈ N}, the following are

satisfied.

(a) The sequence (zn) is equivalent to (yn).

(b) The subspace Z of TX
2 is X-singular.

(c) The operator I : Z → TX
0 is an isomorphic embedding.

By part (ii) of Proposition 3.5 and property (b) above, we see that Z is a

block and weakly X-singular subspace of TX
2 . By Theorem 3.18, the operator

I : Z → TX
0 is not an isomorphic embedding, in contradiction with (c) above.

The proof is completed.

Corollary 3.25. [DL] Let X = (X,Λ, T, (xt)t∈T ) be a Schauder tree basis and

let Y be an infinite-dimensional subspace of TX
2 . Assume that Y is X-singular.

Then there exists an infinite-dimensional subspace Y ′ of Y which is X-compact.

Proof. By Theorem 3.24, the operator I : Y → TX
0 is strictly singular. By

Proposition B.5, there exists an infinite-dimensional subspace Y ′ of Y such

that the operator I : Y ′ → TX
0 is compact. It is easy to see that Y ′ must be

an X-compact subspace of TX
2 in the sense of Definition 3.4. The proof is

completed.

3.6 Schauder tree bases not containing `1

We introduce the following definition.

Definition 3.26. We say that a Schauder tree basis X = (X,Λ, T, (xt)t∈T ) does

not contain `1 if for every σ ∈ [T ] the space Xσ = span{xσ|n : n > 1} does not

contain an isomorphic copy of `1.
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If X = (X,Λ, T, (xt)t∈T ) is a Schauder tree basis not containing `1, then this

property is inherited to the corresponding `2 Baire sum TX
2 of X. In particular,

we have the following theorem.

Theorem 3.27. [AD] Let X = (X,Λ, T, (xt)t∈T ) be a Schauder tree basis not

containing `1. Then the `2 Baire sum TX
2 associated to X does not contain an

isomorphic copy of `1.

Proof. If not, then there would existed a subspace Y of TX
2 isomorphic to `1.

By our assumptions, Y must be X-singular. By Theorem 3.23, we derive a

contradiction. The proof is completed.

Let X = (X,Λ, T, (xt)t∈T ) be a Schauder tree basis and let (et)t∈T be the

canonical basis of TX
2 . Also let (e∗t )t∈T be the bi-orthogonal functionals asso-

ciated to (et)t∈T . For every σ ∈ [T ] we define Zσ to be the weak* closure of

span{e∗σ|n : n > 1}. The spaces X ∗σ and Zσ are isometric and weak* isomorphic

via the operator T : X ∗σ → Zσ defined by

T (x∗)(x) = x∗
(
Pσ(x)

)
for every x ∈ TX

2 .

We have the following description of the dual (TX
2 )∗ of TX

2 for a Schauder tree

basis X not containing `1.

Proposition 3.28. [AD] Let X = (X,Λ, T, (xt)t∈T ) be a Schauder tree basis

not containing `1. Then

(TX
2 )∗ = span

{ ⋃
σ∈[T ]

BZσ

}
.

Proof. We set Z∗ = span
{⋃

σ∈[T ]BZσ
}

. Assume, towards a contradiction, that

Z∗ is a proper subspace of the dual (TX
2 )∗ of TX

2 . Hence, by the Hahn–Banach

theorem, there exists x∗∗ ∈ (TX
2 )∗∗ with ‖x∗∗‖ = 1 and such that x∗∗(z∗) = 0

for every z∗ ∈ Z∗. We select x∗ ∈ (TX
2 )∗ with ‖x∗‖ = 1 and x∗∗(x∗) = 1. By

Theorem 3.27 and our assumptions, we see that the space TX
2 does not contain

`1. Since x∗∗(e∗t ) = 0 for every t ∈ T , by the Odell–Rosenthal theorem [OR],

we may select a bounded block sequence (xn) in TX
2 which is weak* convergent

to x∗∗. We may also assume that

x∗(xn) > 1/2 for every n ∈ N. (3.18)

The fact that x∗∗|Z∗ = 0 implies that Pσ(xn)
w→ 0 in Xσ for every σ ∈ [T ]. By

Theorem 3.6, we see that the sequence (xn) is weakly null, contradicting (3.18)

above. The proof is completed.
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Notice that for every Schauder tree basis X = (X,Λ, T, (xt)t∈T ) and every

σ ∈ [T ] we have

(xσ|n)n>1 is shrinking ⇔ (eσ|n)n>1 is shrinking

⇔ Zσ = span{e∗σ|n : n > 1}.

Hence, by Proposition 3.28, we obtain the following corollary.

Corollary 3.29. [AD] Let X = (X,Λ, T, (xt)t∈T ) be a Schauder tree basis

such that for every σ ∈ [T ] the sequence (xσ|n)n>1 is shrinking. Let (tn) be the

enumeration of T according to the bijection hT : T → N described in Section 3.2.

If (etn) is the corresponding enumeration of (et)t∈T , then the basis (etn) of TX
2

is shrinking.

It should be noted that, by Theorem 3.22, the analogue of Corollary 3.29 for

boundedly complete sequences is not valid.

3.7 Comments and Remarks

1. Almost all the material in this chapter, including the basic notions, is taken

form [AD]. As the reader might have already observed, the space TX
2 is a variant

of James’ fundamental example [Ja]. We also notice that norms similar to the

ones given in (3.2) were previously defined by Bourgain [Bou1] and Bossard

[Bos3] (but of course not at this level of generality).

2. Theorem 3.18 and Corollary 3.19 are new.

3. Proposition 3.21 was essentially noticed by Argyros in [Ar]. We should point

out that all subspaces of TX
2 spanned by well-founded subtrees of the basis are

reflexive (see [Bou1] and [Bos3]).

4. Theorems 3.23 and 3.24 and Corollary 3.25 are taken from [DL]. Another

result contained in that paper and concerning the structure of an X-singular

subspace is the following.

Theorem 3.30. [DL] Let X = (X,Λ, T, (xt)t∈T ) be a Schauder tree basis

and let Y be an infinite-dimensional X-singular subspace of TX
2 . Then every

infinite-dimensional subspace Z of Y contains an unconditional basic sequence.

5. Proposition 3.28 is valid without the assumption that the Schauder tree basis

X = (X,Λ, T, (xt)t∈T ) does not contain `1. In particular, the following holds.

Theorem 3.31. [AD] Let X = (X,Λ, T, (xt)t∈T ) be a Schauder tree basis.

Then

(TX
2 )∗ = span

{ ⋃
σ∈[T ]

BZσ

}
.



Chapter 4

Amalgamated spaces

Let X = (X,Λ, T, (xt)t∈T ) be a Schauder tree basis and consider the `2 Baire

sum TX
2 associated to X. The space TX

2 contains, naturally, a complemented

copy of every space in the class coded by the Schauder tree basis. Moreover,

by Theorem 3.23, there is information on the kind of subspaces present in TX
2 .

This is enough for a large number of applications. However, by Theorem 3.22,

for every interesting Schauder tree basis X the space TX
2 contains an isomorphic

copy of c0.

The aim this chapter is to present a refinement of the previous construction,

also introduced in [AD]. The refinement will lead to a new space for which we

have significant control over the isomorphic types of its subspaces. The method

is to use the Davis–Fiegel–Johnson–Pe lczyński [DFJP] interpolation scheme in

similar spirit as in the work of Argyros and Felouzis [AF].

4.1 Definitions and basic properties

Definition 4.1. [AD] Let X = (X,Λ, T, (xt)t∈T ) be a Schauder tree basis. We

define

W 0
X = conv

{ ⋃
σ∈[T ]

BXσ

}
and WX = conv

{ ⋃
σ∈[T ]

BXσ

}
. (4.1)

Notice that for every Schauder tree basis X the set WX is closed, convex,

bounded and symmetric. This observation permits us to define the following

space which is the central object of study in this chapter.

Definition 4.2. [AD] Let X = (X,Λ, T, (xt)t∈T ) be a Schauder tree basis and

1 < p < +∞. The p-amalgamation space of X, denoted by AX
p , is defined

to be the p-interpolation space of the pair (TX
2 ,WX) (see Definition B.7). By

J : AX
p → TX

2 we shall denote the natural inclusion operator.

55
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Let X = (X,Λ, T, (xt)t∈T ) be a Schauder tree basis and 1 < p < +∞. As in

Section 3.2, we fix a bijection hT : T → N such that for every t, s ∈ T with t @ s

we have hT (t) < hT (s). In what follows, by (tn) we shall denote the enumeration

of the tree T according to the bijection hT , while by (etn) we shall denote the

canonical Schauder basis of TX
2 described in Section 3.2. Finally, for every n ∈ N

with n > 1 let ‖·‖n be the Minkowski gauge of the set 2nWX+2−nBTX
2

. Clearly

‖ · ‖n is an equivalent norm on TX
2 .

A. For every n ∈ N, denoting by Pn : TX
2 → span{etk : k 6 n} the natural

onto projection, we see that Pn(WX) ⊆ WX and Pn(W 0
X) ⊆ W 0

X. Moreover,

setting ēt = J−1(et) for every t ∈ T , it is easy to see that 2−1 6 ‖ēt‖AX
p
6 1.

By Proposition B.9, we obtain that the sequence (ētn) defines a seminormalized

Schauder basis of the space AX
p . In addition, if (etn) is a shrinking basis of TX

2 ,

then (ētn) is a shrinking basis of AX
p .

B. Let x ∈ WX with ‖x‖ = 1. Then for every n ∈ N with n > 1 we have

2−(n+1) 6 ‖x‖n 6 2−n. Let x̄ = J−1(x) and notice that the previous remark

implies that 2−1 6 ‖x̄‖AX
p
6 1. For every σ ∈ [T ] we set

X̄σ = span{ēσ|n : n > 1}. (4.2)

It follows that the operator J : X̄σ → TX
2 is an isomorphic embedding onto the

subspace Xσ of TX
2 . In particular, for every Schauder tree basis X and every

1 < p < +∞ the subspace X̄σ of AX
p , the subspace Xσ of TX

2 and the space

Xσ defined in (3.1) are all mutually isomorphic. Moreover, the Banach–Mazur

distance between X̄σ and Xσ is at most 2.

C. For every finite subset A of [T ] let TA = {σ|n : σ ∈ A and n > 1} be the

B-tree generated by A and set X̄TA = span{ēt : t ∈ TA}. It is easy to see

that the operator J : X̄TA → TX
2 is an isomorphic embedding onto the subspace

XTA of TX
2 (notice, however, that the isomorphic constant is not uniform and

depends on the cardinality of A).

D. More generally, let S be a segment complete subset of T and set

X̄S = span{ēt : t ∈ S}. (4.3)

Consider the natural projection P̄S : AX
p → X̄S .

Fact 4.3. For every segment complete subset S of T we have ‖P̄S‖ = 1.

Fact 4.3 implies, in particular, that X̄S is complemented in AX
p . We notice that

this property of the space AX
p is essentially a consequence of the fact that the

external norm used in the interpolation scheme—that is, the norm in (B.1)—is

an unconditional one. This property is not valid for other variants.
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Proof of Fact 4.3. Let x̄ be a finitely supported vector in AX
p ; that is,

x̄ ∈ span{ēt : t ∈ T}. We set x = J(x̄). Notice that x is finitely supported in

TX
2 and J

(
P̄S(x̄)

)
= PS(x).

Fix n ∈ N with n > 1 and set λn = ‖x‖n. Then for every λ > λn we have

x

λ
∈ 2nWX + 2−nBTX

2
.

Since PS(WX) ⊆WX and PS(BTX
2

) ⊆ BTX
2

, we obtain that

PS(x)

λ
∈ 2nWX + 2−nBTX

2
.

In particular, ‖PS(x)‖n 6 λn = ‖x‖n. Therefore,

‖P̄S(x̄)‖AX
p

=
( ∞∑
n=1

‖PS(x)‖pn
)1/p

6
( ∞∑
n=1

‖x‖pn
)1/p

= ‖x̄‖AX
p
.

The proof of Fact 4.3 is completed.

Up to this point we have seen certain analogies between the spaces AX
p and

TX
2 . The results that follow reveal the structural differences between AX

p and TX
2

and show, in particular, that the p-amalgamation space AX
p is a much “smaller”

space than TX
2 .

Theorem 4.4. [AD] Let X = (X,Λ, T, (xt)t∈T ) be a Schauder tree basis such

that for every σ ∈ [T ] the space Xσ is reflexive. Let 1 < p < +∞. Then the

p-amalgamation space AX
p of X is reflexive.

Proof. By part (iv) of Proposition B.8, it is enough to show that the set WX is

weakly compact. To this end, let

CX =
⋃
σ∈[T ]

BXσ .

Notice that WX = conv{CX}.

Claim 4.5. The set CX is weakly compact.

Proof of Claim 4.5. Let (xn) be a sequence in CX. We need to find a vector

z ∈ CX and a subsequence of (xn) which is weakly convergent to z. Clearly we

may assume that every vector xn is finitely supported. By the definition of the

set CX, for every n ∈ N the support of xn is a chain. Let sn be the minimal

initial segment of T that contains supp(xn). By identifying every initial segment

sn with its characteristic function (that is, an element of 2T ), we find L ∈ [N]∞

and a (possible empty) initial segment s of T such that the sequence (sn)n∈L
converges to s in 2T . We select a branch σ ∈ [T ] such that s ⊆ {σ|n : n > 1}.
For every n ∈ L, set zn = Pσ(xn) and wn = xn − zn = xn − Pσ(xn).
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By our assumptions, the space BXσ is reflexive. Noticing that zn ∈ BXσ for

every n ∈ L, we see that there exist M ∈ [L]∞ and a vector z ∈ BXσ ⊆ CX

such that (zn)n∈M is weakly convergent to z. Now for every n ∈ M let tn
be the v-minimum node of supp(wn). Applying Ramsey’s theorem, we obtain

N ∈ [M ]∞ such that the family {tn : n ∈ N} is either a chain, or an antichain.

We claim that it must be an antichain. Assume not. Let k ∈ N be such that

|tk| 6 |tn| for all n ∈ N . It follows that tk ∈ sn for every n ∈ N , and so,

tk ∈ s ⊆ {σ|n : n > 1}. But this is clearly impossible by the definition of the

vector wk. Hence, the set {tn : n ∈ N} is an antichain. Using this remark, we

see that the sequence (wn)n∈N satisfies an upper `2 estimate, and therefore, it

is weakly null. It follows by the above discussion that the subsequence (xn)n∈N
of (xn) is weakly convergent to z ∈ CX. The claim is proved.

By Claim 4.5 and the Krein–Smulian theorem, we conclude that the set WX

is weakly compact. The proof of Theorem 4.4 is completed.

The following result is a basic dichotomy concerning the isomorphic types

of subspaces of AX
p .

Theorem 4.6. [AD] Let X = (X,Λ, T, (xt)t∈T ) be a Schauder tree basis and

1 < p < +∞. Let Z be a block subspace of AX
p . Then either

(i) Z contains an isomorphic copy of `p, or

(ii) there exists finite A ⊆ [T ] such that the operator P̄TA : Z → X̄TA is an

isomorphic embedding.

Theorem 4.6 can be reformulated as follows.

Corollary 4.7. Let X = (X,Λ, T, (xt)t∈T ) be a Schauder tree basis and

1 < p < +∞. Let Z be a block subspace of AX
p . Then either

(i) Z contains an isomorphic copy of `p, or

(ii) there exists a finite subset {σ0, . . . , σk} of [T ] such that Z is isomorphic to

a subspace of
∑k
n=0⊕Xσn .

The rest of this chapter is devoted to the proof of Theorem 4.6. The basic

tool will be a combinatorial result concerning sequences in TX
2 . This result will

be presented in Section 4.2. The proof of Theorem 4.6 will be completed in

Section 4.3.

4.2 Finding incomparable sets of nodes

This section contains the key result towards the proof of Theorem 4.6. We will

comment, briefly, on the rôle of this result.
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The main problem behind our reasoning is the following. Given a bounded

block sequence (xn) in TX
2 when can we extract a subsequence of (xn) which is

equivalent to the standard basis of `2? This problem is, of course, reduced to

the problem of finding sufficient conditions on a sequence (xn) in order to be

able to infer that the sequence satisfies an upper and, respectively, a lower `2
estimate.

Concerning the upper `2 estimate the problem is solved in Lemma 3.14 (in

fact, Lemma 3.14 is nearly optimal). We stress the fact that the condition given

in Lemma 3.14 does not imply that the sequence satisfies a lower `2 estimate.

Actually, concerning the lower `2 estimate one has the following, more or less

obvious, condition.

Fact 4.8. Let (xn) be a bounded block sequence in TX
2 and c > 0. Assume that

there exists a sequence (An) of mutually incomparable, segment complete subsets

of T such that ‖PAn(xn)‖ > c for every n ∈ N. Then for every k ∈ N and every

a0, . . . , ak ∈ R we have

c ·
( k∑
n=0

a2
n

)1/2

6
∥∥ k∑
n=0

anxn
∥∥
TX

2
.

In particular, the sequence (xn) satisfies a lower `2 estimate.

The main result of this section provides sufficient conditions for the existence

of a sequence of incomparable sets of nodes as described in Fact 4.8 and thereby

giving sufficient conditions for checking the lower `2 estimate.

Proposition 4.9. [AD] Let X = (X,Λ, T, (xt)t∈T ) be a Schauder tree basis and

let (tn) be the enumeration of T according to the bijection hT : T → N described

in Section 3.2. Let (yn) be a normalized block sequence in TX
2 and λ > 0 such

that

{yn : n ∈ N} ⊆ λWX +
1

200
BTX

2
.

Also let r 6 100−3 · λ−1 and assume that

lim sup ‖Pσ(yn)‖ < r for every σ ∈ [T ].

Then there exist L ∈ [N]∞ and for every n ∈ L a segment complete subset An
of T such that the following are satisfied.

(i) For every n ∈ L we have An ⊆ {tk : k ∈ range(yn)} and ‖PAn(yn)‖ > 2/3.

(ii) For every pair n,m ∈ L with n 6= m the sets An and Am are incomparable.

Proof. Let n ∈ N be arbitrary. By our assumptions, there exist wn ∈ W 0
X and

xn ∈ TX
2 such that ‖xn‖ 6 100−1 and yn = λwn+xn. This implies, in particular,
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that ‖yn − λwn‖ 6 100−1. Let In = range(yn) and Rn = {tk : k ∈ In}.
Without loss of generality we may assume that supp(wn) ⊆ Rn for every n ∈ N.

Indeed, by Fact 3.3, the set Rn is segment complete and so PRn(W 0
X) ⊆ W 0

X

and ‖PRn‖ = 1 for every n ∈ N. So, in what follows we will assume that

supp(wn) ⊆ Rn. This property clearly implies that the sequence (wn) is block

as well.

For every n ∈ N we select a family {s0
n, . . . , s

dn
n } of pairwise incomparable

segments of T such that sin ⊆ Rn for all i ∈ {0, . . . , dn}, and

‖λwn‖ =
( dn∑
i=0

‖Psin
(λwn)‖2

)1/2

. (4.4)

Since ‖yn‖ = 1 and ‖yn − λwn‖ 6 100−1, we have 99/100 6 ‖λwn‖ 6 101/100.

We set θ = 82 · 100−2 · λ−2. Notice that λ
√
θ = 8/100. We define

Gn =
{
i ∈ {0, . . . , dn} : ‖Psin

(wn)‖ > θ
}
. (4.5)

Claim 4.10. For every n ∈ N the following hold.

(i) |Gn| 6 4 · λ−2 · θ−2.

(ii)
(∑

i∈Gn ‖Psin
(yn)‖2

)1/2

> 9/10.

Proof of Claim 4.10. (i) Notice that

2 > ‖λwn‖ >
( ∑
i∈Gn

‖Psin
(λwn)‖2

)1/2

> λ
( ∑
i∈Gn

θ2
)1/2

= λ · θ ·
√
|Gn|

which gives the desired estimate.

(ii) Fix n ∈ N. Since wn ∈ W 0
X, the vector wn is of the form wn =

∑kn
j=0 a

j
nx

j
n

where kn ∈ N,
∑kn
j=0 a

j
n = 1 with ajn > 0 and xjn ∈ BX

σ
j
n

for some σjn ∈ [T ]. For

every i ∈ {0, . . . , dn} let βin = ‖Psin
(wn)‖. We claim, first, that

∑dn
i=0 β

i
n 6 1.

Indeed, for every i ∈ {0, . . . , dn} let

Hi =
{
j ∈ {0, . . . , kn} : supp(xjn) ∩ sin 6= ∅}.

Since supp(xjn) is a chain and the family {s0
n, . . . , s

dn
n } consists of pairwise in-

comparable segments, we see that Hi1 ∩Hi2 = ∅ if i1 6= i2. Moreover,

βin = ‖Psin
(wn)‖ =

∥∥Psin

( kn∑
j=0

ajnx
j
n

)∥∥ =
∥∥Psin

( ∑
j∈Hi

ajnx
j
n

)∥∥ 6
∑
j∈Hi

ajn

and so
dn∑
i=0

βin 6
dn∑
i=0

∑
j∈Hi

ajn 6
kn∑
j=0

ajn = 1
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which gives the desired estimate. By the definition of Gn, we have that if i /∈ Gn,

then βin < θ. It follows that( ∑
i/∈Gn

‖Psin
(λwn)‖2

)1/2

= λ
( ∑
i/∈Gn

(βin)2
)1/2

< λ
( ∑
i/∈Gn

βin · θ
)1/2

= λ ·
√
θ
( ∑
i/∈Gn

βin

)1/2

6 λ ·
√
θ =

8

100

by the choice of θ. This fact combined with equality (4.4) and the estimate

‖λwn‖ > 99/100 yields that( ∑
i∈Gn

‖Psin
(λwn)‖2

)1/2

>
91

100
. (4.6)

Using inequality (4.6) and the estimate ‖yn − λwn‖ 6 1/100, we conclude that( ∑
i∈Gn

‖Psin(yn)‖2
)1/2

>
9

10
.

The claim is proved.

By part (i) of Claim 4.10, the choice of θ and by passing to a subsequence

of (yn) if necessary, we may assume that |Gn| = k for every n ∈ N, where

k 6
4 · 1004

84
· λ2.

Of course, the exact numerical estimate of the size of the setGn is not important.

What is crucial is that the bound is uniform. For every n ∈ N let us re-enumerate

the family {sin : i ∈ Gn} of incomparable segments of T , say as {s0
n, . . . , s

k−1
n }.

Claim 4.11. Let i ∈ {0, . . . , k−1} and Mi ∈ [N]∞. Then there exist Ni ∈ [Mi]
∞

and for every n ∈ Ni disjoint segments gin and bin of T such that the following

are satisfied.

(i) For every n ∈ Ni we have sin = gin ∪ bin (that is, gin and bin form a partition

of sin). Moreover, for every t ∈ bin and every s ∈ gin we have t @ s.

(ii) For every n ∈ Ni it holds that ‖Pbin
(yn)‖ < r.

(iii) For every n,m ∈ Ni with n 6= m if both gin and gim are nonempty, then

they are incomparable.

Proof of Claim 4.11. For every n ∈ Mi let tn be the v-minimum node of sin.

Notice that tn 6= tm for every pair n,m ∈ Mi with n 6= m. By Ramsey’s

theorem, there exists I ∈ [Mi]
∞ such that one of the (mutually exclusive)

possibilities must occur.
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Case 1: The set {tn : n ∈ I} is an antichain. In this case we set Ni = I and

for every n ∈ Ni we define gin = sin and bin = ∅. It is easy to see that these

choices satisfy the requirements of the claim.

Case 2: The set {tn : n ∈ I} is a chain. Let τ ∈ [T ] be the branch of T

determined by the infinite chain {tn : n ∈ I}. By our assumptions on the

sequence (yn), we see that

lim sup
n∈I

‖Pτ (yn)‖ 6 lim sup ‖Pτ (yn)‖ < r.

Hence, there exists Ni ∈ [I]∞ such that ‖Pτ (yn)‖ < r for all n ∈ Ni. For every

n ∈ Ni we set gin = sin \ τ and bin = sin ∩ τ . It is also easy to check that these

choices are as desired. The claim is proved.

Applying Claim 4.11 successively, we obtain N ∈ [N]∞ and for every n ∈ N
and every i ∈ {0, . . . , k−1} disjoint segments gin and bin such that the following

are satisfied.

(a) For every n ∈ N and every i ∈ {0, . . . , k − 1} we have sin = gin ∪ bin and,

moreover, if t ∈ bin and s ∈ gin, then t @ s.

(b) For every n ∈ N and every i ∈ {0, . . . , k − 1} we have ‖Pbin
(yn)‖ < r.

(c) For every i ∈ {0, . . . , k − 1} and every pair n,m ∈ N with n 6= m if the

segments gin and gim are nonempty, then they are incomparable.

For every pair i, j ∈ {0, . . . , k− 1} let Ci,j be the subset of [N ]2 consisting of all

(n,m) ∈ [N ]2 for which the segments gin and gjm are nonempty and comparable.

Applying Ramsey’s theorem successively, we find L ∈ [N ]∞ such that for every

i, j ∈ {0, . . . , k − 1} we have that either [L]2 ∩ Ci,j = ∅ or [L]2 ⊆ Ci,j . We

claim that for every pair i, j the first alternative must occur. Indeed, assume

on the contrary that there exist i, j ∈ {0, . . . , k − 1} such that [L]2 ⊆ Ci,j . Let

L = {l0 < l1 < l2 < · · · } be the increasing enumeration of L. Notice, first,

that the segments gil0 , gil1 and gjl2 are nonempty. Moreover, both gil0 and gil1
are comparable with gjl2 . Let t0, t1 and t2 be the v-minimum nodes of gil0 , gil1
and gjl2 respectively. Since l0 < l1 < l2 and the sequence (yn) is block, we see

that t0 @ t2 and t1 @ t2. But this implies that the segments gil0 and gil1 are

comparable, in contradiction with property (c) above. Hence [L]2 ∩Ci,j = ∅ for

every i, j ∈ {0, . . . , k − 1}.
For every n ∈ L we set

An =
{
t : t ∈ gin for some i ∈ {0, . . . , k − 1}

}
. (4.7)

We claim that the set L and the family {An : n ∈ L} satisfy the requirements of

the proposition. Indeed, notice first that, by property (a) above and the remarks
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preceding (4.4), for every n ∈ L we have An ⊆ Rn = {tk : k ∈ range(yn)}.
Moreover, the discussion in the previous paragraph implies that if n,m ∈ L

with n 6= m, then An is incomparable with Am. What remains is to estimate

the quantity ‖PAn(yn)‖ for every n ∈ L. To this end fix n ∈ L. By our

hypotheses on r and the estimate on k, we have

r
√
k 6

1

1003 · λ
· 2 · 1002 · λ

82
6

1

10
. (4.8)

By property (a) above, we see that ‖Psin
(yn)‖ 6 ‖Pgin

(yn)‖+‖Pbin
(yn)‖ for every

i ∈ {0, . . . , k − 1}. Hence, by property (b) and the estimate (4.8), we obtain

( k−1∑
i=0

‖Psin
(yn)‖2

)1/2

6
( k−1∑
i=0

‖Pgin
(yn)‖2

)1/2

+ r
√
k

6
( k−1∑
i=0

‖Pgin
(yn)‖2

)1/2

+
1

10
.

So, by part (ii) of Claim 4.10, we conclude that

‖PAn(yn)‖ >
( k−1∑
i=0

‖Pgin
(yn)‖2

)1/2

>
( k−1∑
i=0

‖Psin
(yn)‖2

)1/2

− 1

10
>

2

3
.

The proof of Proposition 4.9 is completed.

4.3 Proof of Theorem 4.6

Let X = (X,Λ, T, (xt)t∈T ) be a Schauder tree basis and 1 < p < +∞. Let

J : AX
p → TX

2 be the natural inclusion operator. Fix a block subspace Z of AX
p .

We consider the following (mutually exclusive) cases.

Case 1: The operator J : Z → TX
2 is not an isomorphic embedding. We will

show that this case implies part (i) of the theorem; that is, the subspace Z

must contain an isomorphic copy of `p. To see this notice first that the operator

J : Z → TX
2 is one-to-one. Hence, for every finite co-dimensional subspace Z ′ of

Z the operator J : Z ′ → TX
2 is not an isomorphic embedding. By Proposition

B.5, there exists a block subspace Z ′′ of Z such that the operator J : Z ′′ → TX
2

is compact.

We claim that Z ′′ is hereditarily `p and therefore that Z contains an isomor-

phic copy of `p. This is a consequence of the following general fact.

Proposition 4.12. Let (X, ‖ · ‖) be a Banach space, let W be a closed, con-

vex, bounded and symmetric subset of X and let 1 < p < +∞. Consider the

p-interpolation space ∆p(X,W ) of the pair (X,W ) and let J : ∆p(X,W ) → X
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be the natural inclusion map. Let Y be an infinite-dimensional subspace of

∆p(X,W ). Assume that the operator J : Y → X is strictly singular. Then Y is

hereditarily `p.

Proof. Notice that it is enough to show that Y contains an isomorphic copy of

`p. To this end, for every n ∈ N with n > 1 let ‖·‖n be the equivalent norm on X

induced by the Minkowski gauge of the set 2nW + 2−nBX . Consider the space

E =
(∑∞

n=1⊕(X, ‖ · ‖n)
)
`p

. For every k ∈ N with k > 1 let Pk be the natural

(bounded) projection from E onto the subspace Ek =
(∑k

n=1⊕(X, ‖ · ‖n)
)
`p

of E. By the discussion in Appendix B.3, the interpolation space ∆p(X,W )

is identified with the “diagonal” subspace ∆ = {(x, x, . . . ) ∈ E : x ∈ X} of

E. Moreover, our assumption that the operator J : Y → X is strictly singular

reduces to the fact that for every k ∈ N with k > 1 the operator Pk : Y → Ek
is strictly singular. Using these observations the result follows by a standard

sliding hump argument. The proof is completed.

Case 2: The operator J : Z → TX
2 is an isomorphic embedding. We set

Y = J(Z). Notice, first, that Y is a (closed) block subspace of TX
2 . Our main

goal is to show that there exists a finite subset A of [T ] such that the operator

PTA : Y → XTA is an isomorphic embedding. This property easily yields that

the operator P̄TA : Z → X̄TA is also an isomorphic embedding; that is, part (ii)

of the theorem is valid.

We will argue by contradiction. So, assume that for every finite subset A

of [T ] the operator PTA : Y → XTA is not an isomorphic embedding. In other

words and according to Definition 3.4, Y is a weakly X-singular block subspace

of TX
2 . Hence, the structural results obtained in Section 3.4 can be applied to

the subspace Y . In particular, using Corollary 3.19, we may select, recursively,

a normalized block sequence (yn) in Y such that for every n ∈ N with n > 1

and every σ ∈ [T ] we have

‖Pσ(yn)‖ 6 1∑n−1
i=0 |supp(yi)|1/2

· 1

22n
.

Such a selection guarantees the following.

(a) By Lemma 3.14, the sequence (yn) satisfies an upper `2 estimate.

(b) For every σ ∈ [T ] we have ‖Pσ(yn)‖ → 0.

We wish to apply Proposition 4.9 to the sequence (yn). The fact that it can

indeed be applied is the content of the following claim.

Claim 4.13. For every ε > 0 there exists a constant λ = λ(ε) > 0 such that

BY ⊆ λWX + εBTX
2

.
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Proof of Claim 4.13. The desired property is essentially a consequence of the

fact that the operator J : Z → Y is an isomorphism. Specifically, let C > 1 be

such that

‖z‖AX
p
6 C · ‖J(z)‖TX

2
(4.9)

for every z ∈ Z. Fix ε > 0 and select k ∈ N with k > 1 and such that

C · 2−k+1 < ε. We set λ = C · 2k+1 and we claim that λ is as desired. Indeed,

let y ∈ BY be arbitrary and set z = J−1(y) ∈ Z. By (4.9), we have( ∞∑
n=1

‖y‖pn
)1/p

= ‖z‖AX
p
6 C.

Hence ‖y‖k 6 C < 2C and, therefore,

y ∈ (C · 2k+1)WX + (C · 2−k+1)BTX
2
⊆ λWX + εBTX

2
.

The claim is proved.

By Claim 4.13, we see that {yn : n ∈ N} ⊆ λWX+200−1BTX
2

for some λ > 0.

Applying Proposition 4.9 and passing to a subsequence of (yn) if necessary,

we see that there exists a sequence (An) of mutually incomparable, segment

complete subsets of T such that

(c) for every n ∈ N we have An ⊆ {tk : k ∈ range(yn)} and ‖PAn(yn)‖ > 2/3.

By Fact 4.8 and properties (a) and (c) above, we see, in particular, that

(d) there exists a constant δ > 1 such that the sequence (yn) is δ-equivalent to

the standard unit vector basis of `2.

For every t ∈ T let e∗t ∈ (TX
2 )∗ be the bi-orthogonal functional of et. We select

a sequence (y∗n) in (TX
2 )∗ such that for every n ∈ N we have

(e) ‖y∗n‖ = 1, y∗n ∈ span{e∗t : t ∈ An} and y∗n(yn) > 2/3.

The above choice yields that for every x ∈ TX
2 we have(∑

n∈N
y∗n(x)2

)1/2

6 ‖x‖. (4.10)

Indeed, observe that |y∗n(x)| 6 ‖PAn(x)‖ for every n ∈ N. Since the sequence

(An) consists of pairwise incomparable segment complete subsets of T , inequal-

ity (4.10) follows.

We set E = span{yn : n ∈ N}. We define P : TX
2 → E by

P (x) =
∑
n∈N

y∗n(x)

y∗n(yn)
yn. (4.11)

We isolate below two basic properties of the operator P .
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Claim 4.14. The operator P is a well-defined bounded projection. Moreover,

if δ > 1 is as in (d) above, then ‖P‖ 6 2δ.

Proof of Claim 4.14. Clearly P is a projection. We shall estimate the norm of

P . To this end, fix a finitely supported vector x in TX
2 . The sequence (yn) is

δ-equivalent to the standard `2 basis, and so

‖P (x)‖ 6 δ ·
(∑
n∈N

y∗n(x)2 · y∗n(yn)−2
)1/2 (e)

6 2δ ·
(∑
n∈N

y∗n(x)2
)1/2

.

By (4.10), we conclude that ‖P‖ 6 2δ. The claim is proved.

Claim 4.15. We have P (WX) ⊆ conv{±2yn : n ∈ N}.

Proof of Claim 4.15. Fix w ∈ W 0
X. By definition, the vector w is of the form

w =
∑k
i=0 aixi where k ∈ N,

∑k
i=0 ai = 1 with ai > 0 and xi ∈ BXσi for some

σi ∈ [T ]. For every i ∈ {0, . . . , k} let si be the minimal segment of T that

contains supp(xi) (this segment exists because the support of xi is a chain). For

every n ∈ N we set Fn =
{
i ∈ {0, . . . , k} : si ∩ An 6= ∅

}
. Since the sequence

(An) consists of pairwise incomparable sets of nodes, we see that Fn ∩ Fm = ∅
if n 6= m. Moreover,

|y∗n(w)| 6
∑
i∈Fn

ai · |y∗n(xi)| 6
∑
i∈Fn

ai.

Hence, setting θn = |y∗n(w) · y∗n(yn)−1| for every n ∈ N and invoking property

(e), we obtain that

∑
n∈N

θn
(e)

6 2 ·
∑
n∈N
|y∗n(w)| 6 2 ·

∑
n∈N

∑
i∈Fn

ai 6 2 ·
k∑
i=0

ai = 2.

The above inequality clearly implies that P (w) ∈ conv{±2yn : n ∈ N}. The

claim is proved.

We are ready for the last step of the argument. To this end, we need the

following lemma.

Lemma 4.16. [N] Let E be a Banach space and let W be a convex subset of E.

Let λ > 0 and 0 < ε < 1, and assume that BE ⊆ λW+εBE. Then BE ⊆ λ
1−εW .

Proof. Fix e ∈ E. By our assumptions, there exist w0 ∈ W and z0 ∈ BE
such that e = λw0 + εz0. We set e1 = e − λw0. Then ‖e1‖ 6 ε‖z0‖ 6 ε.

Hence, there exist w1 ∈ W and z1 ∈ BE such that e1 = λεw1 + ε2z1. We set

e2 = e1 − λεw1 = e − (λw0 + λεw1) and we notice that ‖e2‖ 6 ε2‖z1‖ 6 ε2.

Continuing recursively, we construct a sequence (wn) in W and a sequence
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(en) in E such that for every k ∈ N with k > 1 we have ‖ek‖ 6 εk and

ek = e−
(
λ
∑k−1
n=0 ε

nwn
)
. These properties and the convexity of W yield that

w = (1− ε)
∞∑
n=0

εnwn ∈W.

Moreover, e =
(
λ · (1− ε)−1

)
w. The proof is completed.

By Claim 4.13, there exists λ > 0 such that BY ⊆ λWX+(4δ)−1BTX
2

. Notice

that E is a subspace of Y , and so, BE ⊆ BY . Hence

BE ⊆ λWX +
1

4δ
BTX

2
.

Applying P in the above inclusion and taking into account that P is a projection

on E with ‖P‖ 6 2δ, we see that

BE ⊆ λP (WX) +
1

2
BE .

Clearly λP (WX) is a convex subset of E. Therefore, by Lemma 4.16, we obtain

that

BE ⊆ 2λP (WX).

Invoking Claim 4.15, we conclude that

BE ⊆ 2λconv{±2yn : n ∈ N}. (4.12)

We have reached the contradiction. Indeed, by (d) above, the sequence (yn) is

equivalent to the standard unit vector basis of `2. On the other hand, inclusion

(4.12) implies that the basic sequence (yn) is equivalent to the standard unit

vector basis of `1. This is clearly a contradiction. The proof of Theorem 4.6 is

completed.

4.4 Comments and Remarks

1. We stress the fact that Theorem 4.6 is valid for an arbitrary subspace of AX
p .

Theorem 4.17. [AD] Let X be a Schauder tree basis and 1 < p < +∞. Let Z

be a subspace of AX
p . Then either

(i) Z contains an isomorphic copy of `p, or

(ii) there exists finite A ⊆ [T ] such that the operator P̄TA : Z → X̄TA is an

isomorphic embedding.
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The proof of Theorem 4.17 follows exactly the same steps of the proof of The-

orem 4.6. The only difference is that one has to replace the standard notion

of a block sequence with the more general, but less conventional, notion of a

“pointwise null sequence” (see [AD, Definition 31]). Actually, once the basic

arguments of the proof of Theorem 4.6 have been understood, then one easily

realizes that it takes a small step to go from block subspaces to arbitrary ones.

Concerning the proof of Theorem 4.6 we point out that it follows some of

the arguments in the work of Argyros and Felouzis [AF]. There is, however, a

notable exception: the proof of Proposition 4.9. The corresponding result in

[AF] is based on a probabilistic argument (see also [M] for an exposition). This

argument is not suitable for the proof of Proposition 4.9 due, mainly, to the

fact that we have to deal with infinitely splitting trees. The proof we presented,

taken from [AD], is of combinatorial nature and relies heavily on the description

of the norm of TX
2 .

2. We notice that there are many variants of the p-amalgamation space. For

instance, let U be a Banach space with an unconditional basis (un) and let X be

a Schauder tree basis. The U -amalgamation space AX
U of X is the interpolation

space of the pair (TX
2 ,WX) which is obtained using the norm of the space U

in (B.1) instead of the `p norm. It is straightforward to adapt the machinery

developed in this chapter in this setting. In particular, Theorem 4.17 has the

following reformulation.

Theorem 4.18. [AD] Let X be a Schauder tree basis and let U be a Banach

space with an unconditional basis. Let Z be a subspace of AX
U . Then either

(i) Z contains a subspace isomorphic to a subspace of U , or

(ii) there exists finite A ⊆ [T ] such that the operator P̄TA : Z → X̄TA is an

isomorphic embedding.

More involved is the construction of the HI amalgamation space AX
HI of a

Schauder tree basis X, a variant also introduced in [AD]. It is obtained using the

method of “HI Schauder sums” developed by Argyros and Felouzis [AF]. This

method allows one to use an HI norm as an external norm in (B.1) yielding the

following result.

Theorem 4.19. [AD] Let X be a Schauder tree basis. Let Z be a subspace of

AX
HI. Then either

(i) Z contains an HI subspace, or

(ii) there exists finite A ⊆ [T ] such that the operator P̄TA : Z → X̄TA is an

isomorphic embedding.



Chapter 5

Zippin’s embedding

theorem

A deep result of Per Enflo [E] asserts that there exists a separable Banach

space without a Schauder basis. On the other hand, by Theorem 1.8, every

separable Banach space embeds into a Banach space with a Schauder basis. An

old problem in Banach space theory (see [LT, Problem 1.b.16]) asked whether

every space X with separable dual is isomorphic to a subspace of a space Y

with a shrinking Schauder basis.

More generally, for every separable Banach space X with a certain property,

say property (P), one is looking for a space Y with a Schauder basis and with

property (P) and such that Y contains an isomorphic copy of X. This “embed-

ding problem” is one of the central problems in Banach space theory and, by

now, there are several strong results obtained in this direction.

This chapter is devoted to the proof of the following theorem of Zippin (as

well as to a parameterized version of it) which answers affirmatively this “em-

bedding problem” for two of the most important properties of Banach spaces.

Theorem 5.1. [Z] The following hold.

(i) Every Banach space X with separable dual embeds into a space Y with a

shrinking Schauder basis.

(ii) Every separable reflexive space X embeds into a reflexive space Y with a

Schauder basis.

Our presentation is based on an alternative proof of Theorem 5.1 due to

Ghoussoub, Maurey and Schachermayer [GMS]. The approach of [GMS] is based

on a selection result which has other applications beside its use in the proof of

Theorem 5.1. The parameterized version of Theorem 5.1, due to Bossard [Bos2],

asserts that the embedding of X into Y can be done “uniformly” in X.

69
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5.1 Fragmentation, slicing and selection

Throughout this section by E = (E, τ) we denote a fixed compact metrizable

space. We also fix a countable basis (Vm) of the topology τ of E consisting of

nonempty open sets.

5.1.1 Fragmentation

A fragmentation ∆: E × E → R on E is a metric on E such that for every

nonempty closed subset K of E and every ε > 0 there exists an open subset V

of E with K ∩ V 6= ∅ and such that ∆− diam(K ∩ V ) 6 ε where, as usual, we

set ∆− diam(A) = sup{∆(x, y) : x, y ∈ A} for every A ⊆ E.

Notice that if ∆ is a fragmentation on E, then the metric space (E,∆) must

be separable. For if not, then we would be able to find ε > 0 and a family

Γ = {xξ : ξ < ω1} ⊆ E such that ∆(xξ, xζ) > ε for every ξ 6= ζ. Refining if

necessary, we may assume that for every ξ < ω1 the point xξ is a condensation

point of Γ in (E, τ). Setting K to be the closure of Γ in (E, τ), we see that

for every relatively open subset V of K there exist x, y ∈ V with ∆(x, y) > ε,

contradicting the fact that ∆ is a fragmentation. Using this observation and

Baire’s classical characterization of Baire-1 functions we obtain the following

proposition.

Proposition 5.2. A metric ∆ on E is a fragmentation if and only if the identity

map Id : (E, τ)→ (E,∆) is Baire-1.

Proof. A classical result in the theory of Borel functions asserts that if X is a

Polish space, Y is a metrizable space (not necessarily separable) and f : X → Y

is Borel, then f(X) is separable (see [Sr, Theorem 4.3.8]). Hence, if Id is Baire-1,

then the metric space (E,∆) is separable. By Baire’s classical characterization

of Baire-1 functions (see [Ke, Theorem 24.15]), we see that for every K ∈ K(E)

the map Id|K has a point of continuity. This implies that ∆ is a fragmentation.

Conversely, let ∆ be a fragmentation and K ∈ K(E). By our assumptions,

we see that for every ε > 0 the set Oε =
{
x ∈ K : osc(Id|K)(x) < ε

}
contains

a dense open subset of K, where by osc(Id|K) we denote the oscillation map

of the function Id|K . It follows that Id|K has a point of continuity. Invoking

Baire’s characterization again, we conclude that Id: (E, τ)→ (E,∆) is Baire-1.

The proof is completed.

As a consequence we have the following corollary.

Corollary 5.3. Let ∆ be a fragmentation on E. Then the map ∆: (E, τ) ×
(E, τ)→ R is Baire-1.
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Proof. The metric space (E,∆) is separable. Hence, by Proposition 5.2, we see

that the identity map Id: (E, τ) × (E, τ) → (E,∆) × (E,∆) is Baire-1. The

proof is completed.

We should point out that the converse implication in Corollary 5.3 is not

valid. That is, if ∆ is a metric on E such that the map ∆: (E, τ)× (E, τ)→ R
is Baire-1, then ∆ is not necessarily a fragmentation (consider, for instance, the

discrete metric on E).

5.1.2 Slicing associated to a fragmentation

Let ∆ be a fragmentation on E. For every ε > 0 we define the slicing function

f∆,ε : K(E)→ K(E) associated to ∆ and ε as follows. We set f∆,ε(∅) = ∅. For

every nonempty K ∈ K(E) let

mK = min{m ∈ N : K ∩ Vm 6= ∅ and ∆− diam(K ∩ Vm) 6 ε}.

Notice that mK is well-defined since ∆ is a fragmentation and (Vm) is a basis

of E. We set

f∆,ε(K) = K \ VmK .

That is, f∆,ε(K) results by removing from K the first nonempty relatively basic

open subset of K with ∆-diameter less than or equal to ε. Clearly f∆,ε(K) is

closed and f∆,ε(K) ⊆ K for every K ∈ K(E) and every ε > 0.

The slicing of E associated to ∆ and ε > 0 is a decreasing transfinite se-

quence (Eξ∆,ε : ξ < ω1) of closed subsets of E defined recursively by

E0
∆,ε = E, Eξ+1

∆,ε = f∆,ε(E
ξ
∆,ε) and Eλ∆,ε =

⋂
ξ<λ

Eξ∆,ε if λ is limit.

There exists a countable ordinal ζ such that Eζ∆,ε = ∅. The index Ind(∆, ε, E)

of this slicing is defined to be the least ordinal ξ < ω1 such that Eξ+1
∆,ε = ∅.

Notice that if Ind(∆, ε, E) = ξ, then Eξ∆,ε 6= ∅. We also observe that for every

ξ 6 Ind(∆, ε, E) the set Eξ∆,ε \ E
ξ+1
∆,ε has ∆-diameter less than or equal to ε.

5.1.3 Derivative associated to a fragmentation

As in Section 5.1.2, let ∆ be a fragmentation of E. For every ε > 0 we define

the derivative D∆,ε : K(E)→ K(E) associated to ∆ and ε by

D∆,ε(K) = K \
⋃
{Vm : K ∩ Vm 6= ∅ and ∆− diam(K ∩ Vm) 6 ε}

= K \
⋃
{V ⊆ E : V is open and ∆− diam(K ∩ V ) 6 ε}.
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That is, D∆,ε(K) results by removing from K all relatively basic open subsets

of K with ∆-diameter less than or equal to ε. Observe that D∆,ε is a derivative

on K(E) according to the terminology in Appendix A.

Notice, however, that the slicing function f∆,ε is not a derivative on K(E).

Actually, f∆,ε is just a version of D∆,ε with delay. Precisely, for every K ∈ K(E)

let (Kξ
∆,ε : ξ < ω1) be the slicing of K according to ∆ and ε > 0 defined

recursively by

K0
∆,ε = K, Kξ+1

∆,ε = f∆,ε(K
ξ
∆,ε) and Kλ

∆,ε =
⋂
ξ<λ

Kξ
∆,ε if λ is limit.

We have the following proposition.

Proposition 5.4. Let ∆ be a fragmentation on E and ε > 0. Then for every

K ∈ K(E) we have Kω
∆,ε ⊆ D∆,ε(K). Moreover,

Ind(∆, ε, E) 6 ω · |E|D∆,ε .

Proof. Fix ε > 0 and K ∈ K(E) nonempty. For notational simplicity for every

n < ω we set Kn = Kn
∆,ε. Let mn ∈ N be defined by

mn = min{m ∈ N : Kn ∩ Vm 6= ∅ and ∆− diam(Kn ∩ Vm) 6 ε}.

Observe that for every n ∈ N we have Kn+1
def
= Kn\Vmn = K\(Vm0

∪· · ·∪Vmn).

Hence mn 6= ml if n 6= l.

Let k ∈ N be such that K ∩ Vk 6= ∅ and ∆ − diam(K ∩ Vk) 6 ε. We claim

that there exists n ∈ N with Kn ∩ Vk = ∅. Assume not. The sequence (Kn) is

decreasing. It follows that for every n ∈ N we have

k ∈ {m ∈ N : Kn ∩ Vm 6= ∅ and ∆− diam(Kn ∩ Vm) 6 ε},

and so, mn 6 k. But this is clearly impossible and our claim is proved. The

above discussion implies that

Kω
∆,ε(K)

def
=
⋂
n

Kn ⊆ D∆,ε(K)

as desired.

Now, taking into account the fact thatKω
∆,ε ⊆ D∆,ε(K) for everyK ∈ K(E),

we will show that for every countable ordinal ξ it holds that

Eω·ξ∆,ε ⊆ D
ξ
∆,ε(E). (5.1)

We proceed by transfinite induction. For ξ = 0 the above inclusion is trivially

valid. If ξ = ζ + 1 is a successor ordinal, then using the fact that D∆,ε is a

derivative and our inductive hypothesis we see that

E
ω·(ζ+1)
∆,ε =

(
Eω·ζ∆,ε

)ω
∆,ε
⊆ D∆,ε(E

ω·ζ
∆,ε) ⊆ D∆,ε

(
Dζ

∆,ε(E)
)

= Dζ+1
∆,ε (E).
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If ξ is a limit ordinal, then

Eω·ξ∆,ε =
⋂
ζ<ξ

Eω·ζ∆,ε ⊆
⋂
ζ<ξ

Dζ
∆,ε(E) = Dξ

∆,ε(E).

Finally, observe that inclusion (5.1) yields the desired estimate for Ind(∆, ε, E).

Indeed, set η = |E|D∆,ε
and notice that Dη

∆,ε(E) = ∅. Therefore, by (5.1), we

obtain that Eω·η∆,ε = ∅ and so Ind(∆, ε, E) 6 ω · η = ω · |E|D∆,ε . The proof is

completed.

5.1.4 The “last bite” of a slicing

Let ∆ be a fragmentation on E and ε > 0. Consider the slicing (Eξ∆,ε : ξ < ω1)

associated to ∆ and ε defined in Section 5.1.2. For every nonempty K ∈ K(E)

there is an ordinal η 6 Ind(∆, ε, E) such that K ∩Eη∆,ε 6= ∅ and K ∩Eη+1
∆,ε = ∅.

We set

Ind(∆, ε,K) = η and L∆,ε(K) = K ∩ Eη∆,ε
and we call η the index of K with respect to the slicing (Eξ∆,ε : ξ < ω1). Also

let L∆,ε(∅) = ∅. The map L∆,ε : K(E) → K(E) is called the “last bite” of the

slicing. Let us summarize the basic properties of the “last bite” map.

Proposition 5.5. [GMS] Let ∆ be a fragmentation on E and ε > 0. Then

the following are satisfied.

(i) For every K ∈ K(E) we have ∆− diam
(
L∆,ε(K)

)
6 ε.

(ii) If K ⊆ C are in K(E) and nonempty, then Ind(∆, ε,K) 6 Ind(∆, ε, C).

(iii) If K ⊆ C are in K(E) and x ∈ K ∩ L∆,ε(C), then Ind(∆, ε,K) =

Ind(∆, ε, C) and x ∈ L∆,ε(K) ⊆ L∆,ε(C).

(iv) If (Kn) is a decreasing sequence in K(E) and K =
⋂
nKn, then the se-

quence of ordinals
(
Ind(∆, ε,Kn)

)
is eventually constant. It follows, in

particular, that there exists n0 ∈ N such that L∆,ε(K) =
⋂
n>n0

L∆,ε(Kn).

Proof. Parts (i), (ii) and (iii) are straightforward consequences of the relevant

definitions. For part (iv) notice that · · · 6 Ind(∆, ε,K1) 6 Ind(∆, ε,K0) since

the sequence (Kn) is decreasing. Hence, the sequence
(
Ind(∆, ε,Kn)

)
must be

eventually constant. The proof is completed.

5.1.5 The “dessert” selection of a fragmentation

Let ∆ be a fragmentation on E. For every n ∈ N let Ln : K(E)→ K(E) be the

“last bite” map associated to ∆ and ε = 2−n as it was defined in Section 5.1.4.

We define, recursively, a sequence of maps Sn : K(E)→ K(E) (n ∈ N) by

S0(K) = K and Sn+1(K) = Ln+1

(
Sn(K)

)
.
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By part (i) of Proposition 5.5, for every nonempty K ∈ K(E) and every n ∈ N
with n > 1 the set Sn(K) is nonempty and has ∆-diameter less than or equal to

2−n. Moreover, the sequence
(
Sn(K)

)
is decreasing. If follows that

⋂
n Sn(K) is

a singleton. The “dessert” selection associated to ∆ is the map s∆ : K(E)→ E

defined by

s∆(K) =
⋂
n

Sn(K).

The basic properties of the “dessert” selection are summarized in the following

theorem due to Ghoussoub, Maurey and Schachermayer.

Theorem 5.6. [GMS] Let E be a compact metrizable space and let ∆ be a

fragmentation on E. Then the “dessert” selection s∆ : K(E) → E satisfies the

following.

(i) For every nonempty K ∈ K(E) we have s∆(K) ∈ K.

(ii) If K ⊆ C are in K(E) and s∆(C) ∈ K, then s∆(K) = s∆(C).

(iii) If (Km) is a decreasing sequence in K(E) and K =
⋂
mKm, then

lim
m

∆
(
s∆(Km), s∆(K)

)
= 0.

Proof. Part (i) is clear. For part (ii) notice first that s∆(C) ∈ K ∩ L1(C). By

part (iii) of Proposition 5.5, we have s∆(C) ∈ L1(K) ⊆ L1(C). Hence, according

to our notation, s∆(C) ∈ S1(K) ⊆ S1(C). Again we see that s∆(C) ∈ S1(K) ∩
L2

(
S1(C)

)
. Continuing inductively, we obtain that s∆(C) ∈ Sn(K) ⊆ Sn(C)

for every n ∈ N. It follows that s∆(C) = s∆(K) as desired.

For part (iii) we argue as follows. Inductively and using part (iv) of Propo-

sition 5.5, we select a sequence (mn) in N and a sequence (ξn) of countable

ordinals such that for every n ∈ N with n > 1 the following hold.

(a) For every m ∈ N with m > mn we have Ind(∆, 2−n,Km) = ξn.

(b) The sequence {Sn(Km) : m > mn} is decreasing.

(c) We have
⋂
m>mn

Sn(Km) = Sn(K).

It follows that for every m > mn the points s∆(Km) and s∆(K) belong to the

set Eξn∆,2−n \E
ξn+1
∆,2−n which has (by definition) ∆-diameter less than or equal to

2−n. The proof is completed.

5.2 Parameterized fragmentation

As in the previous section, in what follows let E = (E, τ) denote a compact

metrizable space and let (Vm) be a countable basis of the topology on E con-

sisting of nonempty sets. We wish to parameterize the construction presented

in Section 5.1. To this end we give the following definition.
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Definition 5.7. Let Z be a standard Borel space. A parameterized Borel frag-

mentation on E is a map D : Z × E × E → R such that, setting Dz(x, y) =

D(z, x, y) for every z ∈ Z and every x, y ∈ E, the following are satisfied.

(1) For every z ∈ Z the map Dz : E × E → R is a fragmentation on E.

(2) The map D is Borel.

Let D be a parameterized Borel fragmentation on E. By condition (1) in Def-

inition 5.7, for every z ∈ Z the map Dz is a fragmentation on E. Hence, fixing

z ∈ Z we can define for every ε > 0 the slicing map fDz,ε, the derivative DDz,ε
and the “last bite” map LDz,ε associated to Dz and ε. The parameterized ver-

sions of these maps are the parameterized slicing map fD,ε : Z×K(E)→ K(E),

the parameterized derivative DD,ε : Z ×K(E) → K(E) and the parameterized

“last bite” map LD,ε : Z → K(E) → K(E) associated to D and ε > 0, defined

by fD,ε(z,K) = fDz,ε(K), DD,ε(z,K) = DDz,ε(K) and LD,ε(z,K) = LDz,ε(K)

respectively. Finally, the parameterized “dessert” selection associated to D is

the map sD : Z ×K(E) → E defined by sD(z,K) = sDz (K), where sDz is the

“dessert” selection associated to the fragmentation Dz. The main result in this

section is the following theorem.

Theorem 5.8. Let E be a compact metrizable space and let Z be a standard

Borel space. Let D : Z×E×E → E be a parameterized Borel fragmentation on

E. Then the parameterized “dessert” selection sD : Z ×K(E) → E associated

to D is Borel.

For the proof of Theorem 5.8 we need the following lemma.

Lemma 5.9. Let E, Z and D be as in Theorem 5.8. Then for every ε > 0 the

parameterized slicing map fD,ε and the parameterized derivative DD,ε associated

to D and ε are both Borel.

Proof. Fix ε > 0. For every m ∈ N let Am ⊆ Z ×K(E) be defined by

(z,K) ∈ Am ⇔ (K ∩ Vm 6= ∅) and (∀x, y ∈ K ∩ Vm we have D(z, x, y) 6 ε).

Claim 5.10. For every m ∈ N the set Am is Borel.

Proof of Claim 5.10. By condition (2) in Definition 5.7, for every p ∈ N the set

Bm,p ⊆ Z ×K(E)× E × E defined by

(z,K, x, y) ∈ Bm,p ⇔ (x, y ∈ K ∩ Vm) and D(z, x, y) > ε+
1

p+ 1

is Borel. Let z ∈ Z. By Corollary 5.3 and our assumptions on D, we see

that the map Dz : (E, τ) × (E, τ) → R is Baire-1. It follows that for every

(z,K) ∈ Z ×K(E) the section {(x, y) : (z,K, x, y) ∈ Bm,p} of Bm,p at (z,K)
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is Kσ. By a classical result of Arsenin and Kunugui (see [Ke, Theorem 35.46]),

the set

Cm,p = projZ×K(E)Bm,p =
{

(z,K) : ∃x, y ∈ E with (z,K, x, y) ∈ Bm,p
}

is Borel too. Noticing that

(z,K) ∈ Am ⇔ (K ∩ Vm 6= ∅) and (∀p ∈ N we have (z,K) /∈ Cm,p)

we conclude that Am is Borel. The claim is proved.

The above claim easily implies that the maps fD,ε and DD,ε are Borel.

Indeed, notice that fD,ε(z,K) = K \ Vm if (z,K) ∈ Am and (z,K) /∈ Ai for

every i < m (the argument for DD,ε is similar). The proof of Lemma 5.9 is

completed.

We are ready to proceed to the proof of Theorem 5.8.

Proof of Theorem 5.8. By Lemma A.12, it is enough to show that for every

ε > 0 the parameterized “last bite” map LD,ε associated to D and ε > 0 is

Borel. So, let us fix ε > 0. For every z ∈ Z let ξz = Ind(Dz, ε, E). Also let

(EξDz,ε : ξ < ω1) be the slicing of E associated to Dz and ε.

Claim 5.11. We have sup{Ind(Dz, ε, E) : z ∈ Z} = ξε < ω1.

Proof of Claim 5.11. By Lemma 5.9 and according to the terminology in Ap-

pendix A, the map DD,ε : Z×K(E)→ K(E) is a parameterized Borel derivative

on K(E). By Theorem A.10, the set

ΩDD,ε = {(z,K) ∈ Z ×K(E) : D∞Dz,ε(K) = ∅}

is Π1
1 and the map (z,K) 7→ |K|DDz,ε is a Π1

1-rank on ΩDD,ε . Fix z ∈ Z. Since

the map Dz is a fragmentation on E we see that the iterated derivatives of E

according to DDz,ε must be stabilized at ∅, and so, the set A = {(z, E) : z ∈ Z}
is a subset of ΩDD,ε . The set A is Borel. Hence, by part (ii) of Theorem A.2,

there exists a countable ordinal ζ such that sup{|E|DDz,ε : z ∈ Z} = ζ. By

Proposition 5.4, for every z ∈ Z we have

Ind(Dz, ε, E) 6 ω · |E|DDz,ε 6 ω · ζ.

The claim is proved.

Let ξε be the countable ordinal obtained by Claim 5.11. By transfinite

recursion, for every ξ 6 ξε we define Aξ ⊆ Z×E as follows. We set A0 = Z×E.

If ξ = ζ + 1 is a successor ordinal, then we set

(z, x) ∈ Aξ ⇔ x ∈ fD,ε
(
z, (Aζ)z

)
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where (Aζ)z = {x ∈ E : (z, x) ∈ Aζ} is the section of Aζ at z. If ξ is a limit

ordinal, then we set

(z, x) ∈ Aξ ⇔ (z, x) ∈
⋂
ζ<ξ

Aζ .

Claim 5.12. The following hold.

(i) For every ξ 6 ξε the set Aξ is Borel and has compact sections.

(ii) For every ξ 6 ξε and every z ∈ Z the section (Aξ)z of Aξ at z coincides

with the set EξDz,ε.

Proof of Claim 5.12. (i) The proof is similar to the proof of Claim 2.15 and

proceeds by transfinite induction on all ordinals less than or equal to ξε. For

ξ = 0 it is straightforward. If ξ = ζ + 1 is a successor ordinal, then by our

inductive assumption and Theorem A.14, we see that the map z 7→ (Aζ)z is

Borel. By Lemma 5.9, the map z 7→ fD,ε
(
z, (Aζ)z

)
is Borel too. Hence, by the

definition of Aξ = Aζ+1 and invoking Theorem A.14 once more, we conclude that

Aξ is Borel. If ξ is limit, then the result follows immediately by the definition

of the set Aξ and our inductive assumption.

(ii) It follows by straightforward transfinite induction. The claim is proved.

For every ξ 6 ξε we define the “hitting” set Hξ ⊆ Z ×K(E) by

(z,K) ∈ Hξ ⇔ ∃x ∈ E with (x ∈ K and (z, x) ∈ Aξ).

Using part (i) of Claim 5.12 and arguing as in the proof of Lemma 5.9, we see

that Hξ is Borel for every ξ 6 ξε. By part (i) of Claim 5.12 and the definition

of the map LD,ε, we obtain that

LD,ε(z,K) = K ∩ (Aξ)z if and only if (z,K) ∈ Hξ and (z,K) /∈ Hξ+1.

This clearly implies that LD,ε is a Borel map. The proof of Theorem 5.8 is

completed.

5.3 The embedding

This section is devoted to the proof of Theorem 5.1. We will give the proof of

part (i) and we will explain, later on, how the construction yields part (ii) as

well. We need, first, to introduce some pieces of notation.

Notation 5.1. By φ : 2<N → N we denote the unique bijection satisfying φ(s) <

φ(t) if either |s| < |t|, or |s| = |t| = n and s <lex t. (Here, by <lex we denote

the usual lexicographical order on 2n.) Moreover, for every t ∈ 2<N we set

Vt = {σ ∈ 2N : t @ σ}.
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We also isolate, for future use, the following elementary facts. Let n, k ∈ N and

i ∈ {0, 1}. Set Ak = {φ−1(m) : k 6 m 6 2k} and πk = {Vt : t ∈ Ak}. We also

set tn = ∅ if n = 0 and tn = φ−1(n− 1)ai if n > 1. Then the following hold.

(F1) The family πk forms a partition of 2N into clopen pieces. Moreover, πk+1

is obtained from πk by splitting the clopen set Vφ−1(k) (which belongs

to πk) into the clopen sets Vφ−1(k)a0 and Vφ−1(k)a1.

(F2) If n 6 k, then for every t ∈ Ak compatible with tn we have tn v t.

Moreover, the family {Vt : t ∈ Ak and tn v t} forms a partition of Vtn .

(F3) If n > k, then there exists a unique t ∈ Ak with t @ tn.

Now let X be a Banach space with separable dual. By Theorem 1.8, we may

assume that X is a subspace of C(2N). Let 1 ∈ C(2N) be the constant function

equal to 1. We fix a function g0 ∈ C(2N) that separates the points of 2N and

with ‖g0‖∞ = 1. By replacing X with span{X ∪ g0 ∪ 1} if necessary, we may

assume that g0 and 1 belong to X. We define ∆X : 2N × 2N → R by

∆X(σ, τ) = sup
{
|f(σ)− f(τ)| : f ∈ BX

}
. (5.2)

Clearly, ∆X is a metric on 2N. Also observe that if (fn) is a dense sequence in

SX , then ∆X(σ, τ) = sup{|fn(σ)− fn(τ)| : n ∈ N} for every σ, τ ∈ 2N. Arguing

as in Lemma 2.9, it is easy to verify that if ∆X is not a fragmentation, then we

would be able to find ε > 0 and a perfect subset P of 2N such that ∆X(σ, σ′) > ε

for every σ, σ′ ∈ P with σ 6= σ′. Hence, our assumption that X∗ is separable

reduces to the fact that ∆X is a fragmentation of 2N. We apply the analysis

presented in Section 5.1 and we obtain the “dessert” selection sX : K(2N)→ 2N

associated to the fragmentation ∆X .

We define a sequence (tXn ) in 2<N as follows. We set tX0 = ∅. For every

n ∈ N with n > 1 let t = φ−1(n− 1) where φ is the bijection between 2<N and

N described in Notation 5.1. Consider the element sX(Vt) of 2N. By part (i) of

Theorem 5.6, there exists a unique i ∈ {0, 1} such that tai @ sX(Vt). We set

tXn = taj where j = i + 1 mod 2. Having defined the sequence (tXn ), we define

a normalized sequence (eXn ) in C(2N) by the rule

eXn = 1VtXn
(5.3)

for every n ∈ N. Before we proceed to our discussion on the properties of the

sequence (eXn ) we make the following simple observation. Let k,m ∈ N with

tXk @ tXm (by the properties of φ this implies that k < m). Then there exists a

node s ∈ 2<N with tXk @ s, |s| = |tXm| and such that eXm(σ) = 0 for every σ ∈ Vs.

Claim 5.13. The sequence (eXn ) is a normalized monotone basis of C(2N).
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Proof of Claim 5.13. First we observe that 1Vt ∈ span{eXn : n ∈ N} for every

t ∈ 2<N. Hence span{eXn : n ∈ N} = C(2N). Thus, it is enough to show that

(eXn ) is a monotone basic sequence. To see this let k,m ∈ N with k < m and

a0, . . . , am ∈ R. There exists σ ∈ 2N such that

∥∥ k∑
n=0

ane
X
n

∥∥
∞ =

∣∣ k∑
n=0

ane
X
n (σ)

∣∣.
By the remarks before the statement of the claim, we may find τ ∈ 2N such that

eXn (τ) = eXn (σ) if 0 6 n 6 k while eXn (τ) = 0 if k < n 6 m. Hence,

∥∥ k∑
n=0

ane
X
n

∥∥
∞ =

∣∣ k∑
n=0

ane
X
n (σ)

∣∣ =
∣∣ m∑
n=0

ane
X
n (τ)

∣∣ 6 ∥∥ m∑
n=0

ane
X
n

∥∥
∞.

The claim is proved.

For every k ∈ N let Pk : C(2N) → span{eXn : n 6 k} be the natural pro-

jection. We will give a representation of Pk which will be very useful in the

argument below. As in (F1) above, let Ak = {φ−1(m) : k 6 m 6 2k} and

πk = {Vt : t ∈ Ak}.

Claim 5.14. For every k ∈ N and every f ∈ C(2N) we have

Pk(f) =
∑
V ∈πk

f
(
sX(V )

)
1V .

Proof of Claim 5.14. Fix k ∈ N. Let Rk : C(2N) → C(2N) denote the operator

defined by

Rk(f) =
∑
V ∈πk

f
(
sX(V )

)
1V =

∑
t∈Ak

f
(
sX(Vt)

)
1Vt .

Since ‖Rk‖ 6 1, by Claim 5.13, it is enough to show that Rk(eXn ) = eXn if n 6 k

while Rk(eXn ) = 0 if n > k. By (F2) and part (i) of Theorem 5.6, we see that

Rk(eXn ) = eXn for every n 6 k. Now let n > k and consider the unique node t in

Ak with t @ tXn obtained by (F3) above. We claim that sX(Vt) /∈ VtXn ; clearly,

this implies that Rk(eXn ) = 0. To see this let w be the immediate predecessor

of tXn in 2<N. Notice that t v w @ tXn and so VtXn ⊆ Vw ⊆ Vt. By the definition

of the sequence (tXn ), we have

sX(Vw) /∈ VtXn . (5.4)

This implies that sX(Vt) /∈ VtXn . For if not, by part (ii) of Theorem 5.6, we

would have that sX(Vw) ∈ VtXn in contradiction with (5.4) above. The claim is

proved.
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For every µ ∈ M(2N) = C(2N)∗ and every f ∈ C(2N) we set µ(f) =
∫
f dµ.

We define

W0 =
⋃
k∈N

Pk(BX). (5.5)

Notice that W0 is bounded, convex and symmetric. The following lemma is the

key step towards the proof of Theorem 5.1.

Lemma 5.15. [GMS] For every µ ∈M(2N) we have

lim
k

sup
w∈W0

µ
(
w − Pk(w)

)
= 0.

Proof. Let r > 0 be given. For every k ∈ N and every σ ∈ 2N there exists a

unique clopen set V ∈ πk such that σ ∈ V . We shall denote it by Vk(σ). Notice

that Vk(σ) ⊆ Vn(σ) for every σ ∈ 2N and every k, n ∈ N with n < k. Let f ∈ BX
be arbitrary. By Claim 5.14, for every k ∈ N we have

|µ
(
f − Pk(f)

)
| =

∣∣∣ ∑
V ∈πk

∫
V

f(σ)− f
(
sX(V )

)
dµ(σ)

∣∣∣
=

∣∣∣ ∫ f(σ)− f
(
sX(Vk(σ))

)
dµ(σ)

∣∣∣
6

∫
∆X

(
sX({σ}), sX(Vk(σ))

)
dµ(σ).

For every σ ∈ 2N it holds {σ} =
⋂
k Vk(σ) and the sequence

(
Vk(σ)

)
is decreas-

ing. Hence, by part (iii) of Theorem 5.6, we have ∆X

(
sX({σ}), sX(Vk(σ))

)
→ 0

for every σ ∈ 2N. Notice that 0 6 ∆X(σ, τ) 6 2 for every pair σ, τ ∈ 2N. By

Lebesgue’s dominated convergence theorem, there exists l ∈ N such that for

every k > l and every f ∈ BX we have

|µ(f − Pk(f)
)
| 6 r

2
. (5.6)

Now let w ∈ W0 be arbitrary and k > l. There exist f ∈ BX and n ∈ N with

w = Pn(f). If n 6 k, then w − Pk(w) = 0. If n > k, then

w − Pk(w) =
(
f − Pk(f)

)
−
(
f − Pn(f)

)
.

Invoking (5.6), we see that |µ
(
w − Pk(w)

)
| 6 r for every w ∈ W0 and every

k > l. The proof is completed.

We are ready for the last step of the proof of part (i) of Theorem 5.1. Let

WX = W 0 =
⋃
k∈N

Pk(BX). (5.7)

We notice the following properties of WX .
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(P1) WX is closed, convex, bounded and symmetric.

(P2) BX ⊆WX .

(P3) Pk(WX) ⊆WX for every k ∈ N.

By (P1), the Davis–Fiegel–Johnson–Pe lczyński interpolation scheme can be ap-

plied to the pair
(
C(2N),WX

)
and p = 2 (see Appendix B.3). Denote by Z the

interpolation space and by J : Z → C(2N) the natural inclusion map. By (P2),

we see that X is contained in Z. We observe that eXn ∈ span{WX} for every

n ∈ N. For n = 0 this follows form the fact that 1 ∈ BX and P0(1) = eX0 . Now

let n > 1. Also let g0 ∈ BX be the fixed function that separates the points of

2N and write g0 =
∑
k∈N ake

X
k . Notice that ak 6= 0 for every k ∈ N. Hence

ane
X
n = Pn(g0)− Pn−1(g0) ∈WX −WX .

We set zXn = J−1(eXn ) for every n ∈ N. It follows, by (P3), the above

discussion and Proposition B.9, that (zXn ) is a monotone Schauder basis (not

normalized) of Z. For every k ∈ N let Qk : Z → span{zXn : n 6 k} be the

natural onto projection. It is easy to see that J
(
Qk(z)

)
= Pk

(
J(z)

)
for every

z ∈ Z and every k ∈ N. We claim that (zXn ) is shrinking. This is equivalent to

saying that

lim
k

sup
z∈BZ

z∗
(
z −Qk(z)

)
= 0 for every z∗ ∈ Z∗. (5.8)

Notice that we need to check (5.8) only for a norm dense subset of Z∗. By

part (vi) of Proposition B.8, the dual operator J∗ : M(2N) → Z∗ has norm

dense range. Hence, it is enough to show that

lim
k

sup
z∈BZ

µ
(
J(z)− Pk(J(z))

)
= 0 for every µ ∈M(2N). (5.9)

By the definition of Z, for every ε > 0 there exists n ∈ N such that every z ∈ BZ
can be written as z = z1 + z2 where J(z1) ∈ 2nW0 and ‖J(z2)‖ 6 ε. Combining

this fact with Lemma 5.15, we see that (5.9) is valid. This shows that (zXn ) is

shrinking. The proof of part (i) of Theorem 5.1 is completed.

As we have already mentioned in the beginning of the section we shall explain

how the proof of part (i) of Theorem 5.1 yields part (ii) as well. But before that

let us isolate in a definition the above described construction.

Definition 5.16. Let X be a subspace of C(2N) with separable dual and such

that 1, g0 ∈ X. By Z(X) we shall denote the space constructed following the

procedure described above. We shall call the space Z(X) as the Ghoussoub–

Maurey–Schachermayer space associated to X.

Let us gather what we have shown so far concerning the Ghoussoub–Maurey–

Schachermayer construction.
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Theorem 5.17. [GMS] Let X be a subspace of C(2N) with separable dual and

such that 1, g0 ∈ X. Then the space Z(X) associated to X has a shrinking

Schauder basis and contains an isomorphic copy of X.

By Theorem 5.17, part (ii) of Theorem 5.1 is an immediate consequence of

the following lemma.

Lemma 5.18. Let X be a subspace of C(2N) such that 1, g0 ∈ X. Assume that

X is reflexive. Then the following hold.

(i) The set WX defined in (5.7) is weakly compact.

(ii) The space Z(X) associated to X is reflexive.

Proof. By Proposition B.8, it is enough to show that the set WX is weakly

compact. To this end, let J : Z(X) → C(2N) be the inclusion map. We have

already mentioned that X is contained in Z(X). We set K = J−1(BX). Notice

that K is a weakly compact subset of Z(X). Recall that for every k ∈ N by

Qk : Z(X) → span{zXn : n 6 k} we denote the natural onto projection. As the

basis (zXn ) of Z(X) is shrinking, by Lemma B.10, we see that the set

K ′ = K ∪
⋃
k∈N

Qk(K)

is a weakly compact subset of Z(X). Hence, so is the set J(K ′). Finally notice

that J(K ′) = WX . The proof is completed.

5.4 Parameterizing Zippin’s theorem

This section is devoted to the proof of a result, due to Bossard, asserting that the

Ghoussoub–Maurey–Schachermayer construction (as presented in Section 5.3)

can be done “uniformly” in X. Before we give the precise statement, we intro-

duce the following notation. For every X ∈ SB we set

EX = span{X ∪ 1 ∪ g0}

where, as in Section 5.3, by 1 we denote the constant function on 2N equal to

1 while by g0 ∈ C(2N) we denote a fixed function that separates the points of

2N and with ‖g0‖∞ = 1. Clearly X is a closed subspace of EX . Also notice

that EX has separable dual (respectively, EX is reflexive) if and only if X∗ is

separable (respectively, X is reflexive). We are ready to state and prove the

main result of this section.

Theorem 5.19. [Bos2] Let B be a Borel subset of SD. Then the set Z ⊆ B×SB

defined by

(X,Y ) ∈ Z ⇔ Y is isometric to Z(EX)

is analytic.
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Proof. Let dn : SB → C(2N) and Sn : SB → C(2N) (n ∈ N) be the sequences of

Borel maps described in properties (P2) and (P3) in Section 2.1.1. Recall that

the sequence
(
dn(X)

)
is norm dense in X for every X ∈ SB, while the sequence(

Sn(X)
)

is norm dense in the sphere SX of X for every X ∈ SB with X 6= {0}.
Notice that EX 6= {0} for all X ∈ SB.

Claim 5.20. The map SB 3 X 7→ EX ∈ SB is Borel.

Proof of Claim 5.20. Let U be a nonempty open subset of C(2N). Noticing that

EX ∩ U 6= ∅ ⇔ ∃n ∈ N ∃p, q ∈ Q with dn(X) + p1 + qg0 ∈ U

we see that the set {X : EX ∩ U 6= ∅} is Borel. The claim is proved.

Let B be as in the statement of the theorem. Define D : B × 2N × 2N → R
by

D(X,σ, τ) = sup
{
|Sn(EX)(σ)− Sn(EX)(τ)| : n ∈ N

}
. (5.10)

By Claim 5.20, we see that the map D is Borel. We observe that for every

X ∈ B and every σ, τ ∈ 2N we have D(X,σ, τ) = ∆EX (σ, τ), where ∆EX is the

fragmentation on 2N associated to the space EX and defined in (5.2). It follows

that D is a parameterized Borel fragmentation according to Definition 5.7. We

apply Theorem 5.8 and we obtain a Borel map s : B×K(2N)→ 2N such that for

every (X,K) ∈ B ×K(2N) the point s(X,K) coincides with the point sEX (K),

where sEX is the “dessert” selection associated to the fragmentation ∆EX . For

every X ∈ B let (eEXn ) be the monotone basis of C(2N) defined in (5.3). We

have the following claim.

Claim 5.21. The map B 3 X 7→ (eEXn ) ∈ C(2N)N is Borel.

Proof of Claim 5.21. It is enough to show that for every n ∈ N the map

B 3 X 7→ eEXn is Borel. So fix n ∈ N. Let t = ∅ if n = 0; otherwise, set

t = φ−1(n − 1) where φ is the bijection between 2<N and N described in No-

tation 5.1. We define B0 = {X ∈ B : ta1 @ s(EX , Vt)} and B1 = B \ B0.

Invoking the fact that s is Borel and Claim 5.20, we see that B0 is Borel. Notice

that eEXn = 1V
ta0

if X ∈ B0 and eEXn = 1V
ta1

if X ∈ B1. Therefore, the map

B 3 X 7→ eEXn is Borel. The claim is proved.

We need the following elementary observation. Let Z be a standard Borel

space, let Y be a Polish space and let fn : Z → Y (n ∈ N) be a sequence of

Borel maps. Then the map Φ: Z → F (Y ) defined by Φ(z) = {fn(z) : n ∈ N}
for every z ∈ Z, is Borel. Now let WEX be the closed subset of C(2N) associated

to the space EX and defined in (5.7).

Claim 5.22. The map B 3 X 7→WEX ∈ F
(
C(2N)

)
is Borel.
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Proof of Claim 5.22. In light of the previous observation, it is enough to show

that for every n, k ∈ N and every rational q in [−1, 1] the map fn,k,q : B → C(2N)

defined by fn,k,q(X) = Pk
(
qSn(EX)

)
, is Borel. By Claims 5.14 and 5.20 and

taking into account the fact that the parameterized selection s is Borel, we see

that the map B 3 X 7→WEX is also Borel. The claim is proved.

Let m ∈ N with m > 1. For every X ∈ B we set

Wm
EX = 2mWEX + 2−mBC(2N). (5.11)

Using Claim 5.22, it is easy to see that the map B 3 X 7→Wm
EX
∈ F

(
C(2N)

)
is

Borel. This fact has, in turn, the following consequence.

Claim 5.23. If ‖ · ‖m,X denotes the Minkowski gauge of the closed, convex and

symmetric set Wm
EX

, then the function B ×C(2N) 3 (X, f) 7→ ‖f‖m,X is Borel.

Proof of Claim 5.23. Let r ∈ R with r > 0 and notice that

‖f‖m,X < r ⇔ ∃q ∈ Q with 0 < q < r and f ∈ qWm
EX .

The claim is proved.

We define B ⊆ B × C(2N)N by(
X, (yn)

)
∈ B ⇔ (zEXn ) is 1-equivalent to (yn)

where (zEXn ) is the sequence (eEXn ) regarded as a basis of the space Z(EX). In

order to finish the proof of Theorem 5.19, it is enough to show that the set B is

Borel. Indeed,

(X,Y ) ∈ Z ⇔ ∃(yn) ∈ C(2N) with
[
(∀n yn ∈ Y ) and

(span{yn : n ∈ N} = Y ) and
(
X, (yn)

)
∈ B

]
.

By property (P5) in Section 2.1.1 and invoking the Borelness of the set B, we see

that Z is analytic, as desired. So, it remains to show that B is Borel. Observe

that (
X, (yn)

)
∈ B ⇔ ∀k ∈ N ∀a0, . . . , ak ∈ Q

(
∀N > 1 we have

∑
16m6N

∥∥ k∑
n=0

ane
EX
n

∥∥2

m,X
6
∥∥ k∑
n=0

anyn
∥∥2
)

and
(
∀p > 1 ∃N > 1 with

∥∥ k∑
n=0

anyn
∥∥2 − 1

p
6

∑
16m6N

∥∥ k∑
n=0

ane
EX
n

∥∥2

m,X

)
.

By Claims 5.21 and 5.23, we conclude that B is Borel. The proof of Theorem

5.19 is completed.
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We close this section by mentioning two consequences of Theorem 5.19. They

will be of particular importance later on.

Corollary 5.24. [DF] Let A be an analytic subset of SD. Then there exists an

analytic subset A′ of SD with the following properties.

(i) Every Y ∈ A′ has a shrinking Schauder basis.

(ii) For every X ∈ A there exists Y ∈ A′ containing an isomorphic copy of X.

Proof. By Theorem 2.11, the set SD is Π1
1. Hence, by Lusin’s separation theo-

rem, there exists a Borel set B ⊆ SD with A ⊆ B. We apply Theorem 5.19 for

the Borel set B and we obtain the analytic set Z as described in Theorem 5.19.

We define A′ ⊆ SB by

Y ∈ A′ ⇔ ∃X ∈ SB
[
(X ∈ A) and (X,Y ) ∈ Z

]
.

Clearly A′ is as desired. The proof is completed.

By Theorem 2.5, the set REFL is Π1
1. Hence, by Lemma 5.18, we obtain the

following analogue of Corollary 5.24 for reflexive spaces. The proof is identical

to the proof of Corollary 5.24.

Corollary 5.25. [DF] Let A be an analytic subset of REFL. Then there exists

an analytic subset A′ of REFL with the following properties.

(i) Every Y ∈ A′ has a Schauder basis.

(ii) For every X ∈ A there exists Y ∈ A′ containing an isomorphic copy of X.

5.5 Comments and Remarks

1. The slicing methods presented in Section 5.1 have been developed by Ghous-

soub, Maurey and Schachermayer [GMS]. They can be performed in more gen-

eral topological spaces. We refer the reader to [GMS, GGMS] and the references

therein for a detailed presentation, as well as, for further applications of these

techniques.

2. The notion of a “parameterized Borel fragmentation” given in Definition

5.7 is new. It is the analogue of the notion of a parameterized Borel derivative

presented in Appendix A. Theorem 5.8 is new as well.

3. As we have already mentioned, the proof of Zippin’s theorem given in Section

5.3 is due to Ghoussoub, Maurey and Schachermayer [GMS]. We notice that it

was known, prior to [Z], that a reflexive subspace of a space with a shrinking

basis embeds into a reflexive space with a basis (see [DFJP]).
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4. Theorem 5.19 is due to Bossard [Bos2]. His approach, however, is different

(he used Theorem 2.11 instead of Theorem 5.8 and worked with the Szlenk

indices of the corresponding spaces). Bossard used Theorem 5.19 to derive the

following.

Corollary 5.26. [Bos2] There exists a map φ : ω1 → ω1 such that for every

ξ < ω1 if X is a Banach space with Sz(X) 6 ξ, then X embeds into a Banach

space Y with a shrinking basis, satisfying Sz(Y ) 6 φ(ξ).

We notice that, in this direction, there exist two sharp quantitative refinements

of Theorem 5.1. The first is due to Odell, Schlumprecht and Zsák and deals

with separable reflexive Banach spaces.

Theorem 5.27. [OSZ] Let ξ be a countable ordinal and let X be a separable

reflexive Banach space such that max
{

Sz(X),Sz(X∗)
}

6 ωξ·ω. Then X em-

beds isomorphically into a reflexive Banach space Y with a Schauder basis also

satisfying max
{

Sz(Y ),Sz(Y ∗)
}
6 ωξ·ω.

The second is due to Freeman, Odell, Schlumprecht and Zsák and deals with

Banach spaces with separable dual.

Theorem 5.28. [FOSZ] Let ξ be a countable ordinal and let X be a separable

Banach space such that Sz(X) 6 ωξ·ω. Then X embeds isomorphically into a

Banach space Y with a shrinking Schauder basis also satisfying Sz(Y ) 6 ωξ·ω.

5. Corollaries 5.24 and 5.25 were noticed in [DF]. We should point out that they

can be also derived by Theorems 5.28 and 5.27 respectively, using the machinery

developed in Sections 2.3 and 2.5.



Chapter 6

The Bourgain–Pisier

construction

This chapter is devoted to the study of an embedding result due to Jean Bour-

gain and Gilles Pisier [BP]. The main goal in the Bourgain–Pisier construction

is to embed isometrically a given separable Banach space X into a separable

L∞-space Y (that is, into a Banach space with prescribed local structure) in

such a way that the quotient Y/X is “small”.

Theorem 6.1. [BP] Let X be a separable Banach space and λ > 1. Then there

exists a separable L∞,λ+-space, denoted by Lλ[X], which contains X isometri-

cally and is such that the quotient Lλ[X]/X has the Radon–Nikodym and the

Schur properties.

We recall that a Banach space X has the Schur property if every weakly

null sequence in X is automatically norm convergent. It is an immediate conse-

quence of Rosenthal’s dichotomy [Ro2] that a space with the Schur property is

hereditarily `1. Generalities about the Radon–Nikodym property can be found

in Appendix B.5.

The building blocks of the space Lλ[X] in Theorem 6.1 are obtained us-

ing a method of extending operators due to Kisliakov [Ki]. This method has

found many other remarkable applications beside its use in Theorem 6.1. It is

presented in Section 6.1. The rest of the material in this chapter is devoted

to the proof of Theorem 6.1 as well as to a parameterized version of it. The

parameterized version is taken from [D3] and asserts that the space Lλ[X] is

constructed from X in a “Borel way”. This information gives further control on

the resulting space Lλ[X] and it will be crucial for the results in Chapter 7.

87
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6.1 Kisliakov’s extension

This section is devoted to the study of a method of extending operators invented

by Kisliakov [Ki]. Let us start, first, with a brief motivating discussion.

Consider a Banach space X. Suppose that B is an arbitrary Banach space

and that Z is a subspace of B. Suppose, further, that we are given a bounded

linear operator u : Z → X. When can we extend the operator u to a bounded

linear operator ũ : B → X? Pictorially, we are asking when we can close off the

diagram:

B

  
Z

Id

OO

u
// X

By definition, this extension problem has an affirmative answer if and only if

the space X is injective.

Suppose now that we are allowed to embed X isometrically into another

Banach space X ′ via an isometric embedding j : X → X ′. By making an ap-

propriate choice of X ′ and j, can we close off the following diagram?

B

''
Z

Id

OO

u
// X

j
// X ′

It is easy to see that if we put no restrictions on X ′, then such an extension is

always possible. Indeed, let X ′ be the space `∞(BX∗) and let j : X → X ′ be

the natural isometric embedding. Since `∞(BX∗) is injective (see [LT]), we can

extend the operator j ◦u. Observe, however, that this solution is uneconomical.

The space X ′ is too large.

The method discovered by Kisliakov lies somewhere between the above ex-

tremes. It has been heavily investigated and it has been used in many remarkable

ways. Let us give the main definition.

Definition 6.2. [Ki] Let B and X be Banach spaces and η 6 1. Let Z be a

subspace of B and let u : Z → X be a bounded linear operator with ‖u‖ 6 η. Let

B ⊕1 X be the vector space B ×X equipped with the norm ‖(b, x)‖ = ‖b‖+ ‖x‖
and consider the subspace N =

{
(z,−u(z)) : z ∈ Z

}
of B ⊕1 X. We define

X1 = (B ⊕1 X)/N . Moreover, denoting by Q : B ⊕1 X → X1 the natural

quotient map, we define ũ : B → X1 and j : X → X1 by

ũ(b) = Q(b, 0) and j(x) = Q(0, x)

for every b ∈ B and every x ∈ X. We call the family (X1, j, ũ) as the canonical

triple associated to (B,Z,X, u, η).
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The rest of this section is devoted to the study of the canonical triple intro-

duced above.

6.1.1 Basic properties

Proposition 6.3. [Ki] Let B,Z,X, u and η be as in Definition 6.2. Let

(X1, j, ũ) be the canonical triple associated to (B,Z,X, u, η). Then the following

are satisfied.

(i) The operator j is an isometric embedding.

(ii) We have ‖ũ‖ 6 1 and ũ(z) = j
(
u(z)

)
for all z ∈ Z.

(iii) The spaces B/Z and X1/j(X) are isometric.

Proof. (i) Fix x ∈ X. By definition, we have j(x) = Q(0, x). It follows that

‖x‖ > ‖Q(0, x)‖ = inf{‖(0, x) + (z,−u(z))‖ : z ∈ Z}
= inf{‖z‖+ ‖x− u(z)‖ : z ∈ Z}
> inf{‖z‖+ ‖x‖ − ‖u(z)‖ : z ∈ Z}
> inf{‖x‖+ (1− η)‖z‖ : z ∈ Z} > ‖x‖.

Therefore j is an isometric embedding.

(ii) To see that ‖ũ‖ 6 1 notice that for every b ∈ B we have

‖ũ(b)‖ = ‖Q(b, 0)‖ 6 ‖(b, 0)‖ = ‖b‖.

Let z ∈ Z. Then ‖ũ(z)−j
(
u(z)

)
‖ = ‖Q(z, 0)−Q(0, u(z))‖ = ‖Q(z,−u(z))‖ = 0,

and so ũ(z) = j
(
u(z)

)
, as claimed.

(iii) We define a map U : B/Z → X1/j(X) as follows. For every β ∈ B/Z we

select b ∈ B such that β = b+Z and we set U(β) = ũ(b) + j(X). The fact that

ũ(z) = j
(
u(z)

)
for every z ∈ Z, already established in part (ii), implies that

U(β) is independent of the choice of b. In other words, U is a well-defined linear

operator. It is easy to see that ‖U‖ 6 1. We will show that U is an isometry.

We argue as follows. Fix α ∈ X1/j(X). There exist b ∈ B and x ∈ X such

that α = Q(b, x) + j(X). Hence

α = Q(b, 0) +Q(0, x) + j(X) = ũ(b) + j(x) + j(X) = U(b+ Z).

Therefore, U is onto. Moreover,

‖b+ Z‖B/Z > ‖α‖ = inf{‖Q(b, x) +Q(0, x′)‖ : x′ ∈ X}
= inf{‖Q(b, x′′)‖ : x′′ ∈ X}
= inf{‖b+ z‖+ ‖x′′ − u(z)‖ : x′′ ∈ X and z ∈ Z}
> inf{‖b+ z‖ : z ∈ Z} = ‖b+ Z‖B/Z .

The proof is completed.
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6.1.2 Preservation of isomorphic embeddings

Lemma 6.4. [BP] Let B,Z,X, u and η be as in Definition 6.2. Let δ > 0

and assume that ‖u(z)‖ > δ‖z‖ for every z ∈ Z. Consider the canonical triple

(X1, j, ũ) associated to (B,Z,X, u, η). Then ‖ũ(b)‖ > δ‖b‖ for every b ∈ B.

Proof. The fact that ‖u‖ 6 η 6 1 implies that δ 6 1. Fix b ∈ B and notice that

‖ũ(b)‖ = ‖Q(b, 0)‖ = inf{‖b+ z‖+ ‖u(z)‖ : z ∈ Z}
> inf{δ‖b+ z‖+ δ‖z‖ : z ∈ Z} > δ‖b‖.

The proof is completed.

6.1.3 Minimality

Lemma 6.5. [BP] Let B,Z,X, u and η be as in Definition 6.2 and consider

the canonical triple (X1, j, ũ) associated to (B,Z,X, u, η). Let F be a Banach

space. Also let T : X → F and v : B → F be bounded linear operators such that

the following diagram commutes:

B
v // F

Z

Id

OO

u
// X

T

OO

Then there exists a unique bounded linear operator φ : X1 → F such that the

following diagram commutes:

B
v //

ũ

  

F

X1

φ

>>

Z

Id

OO

u
// X

j
`` T

OO

Moreover, ‖φ‖ 6 max{‖T‖, ‖v‖}.

Proof. We start with the following simple observation. Fix α ∈ X1. Let b, b′ ∈ B
and let x, x′ ∈ X such that α = Q(b, x) = Q(b′, x′). There exists z0 ∈ Z such

that b′ = b+ z0 and x′ = x− u(z0). The fact that v(z) = T
(
u(z)

)
for all z ∈ Z

implies that v(b′) + T (x′) = v(b) + T (x).

We are ready to define the operator φ : X1 → F . So, let α ∈ X1 and select

b ∈ B and x ∈ X such that α = Q(b, x). We set φ(α) = v(b) + T (x). The

previous remark yields that φ is well-defined (that is, independent of the choice
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of b and x) and ‖φ‖ 6 max{‖T‖, ‖v‖}. Finally, the operator φ is unique. Indeed,

if ψ : X1 → F is another operator such that v = ψ ◦ ũ and T = ψ ◦ j, then it is

easy to see that ψ = φ. The proof is completed.

6.1.4 Uniqueness

Lemma 6.6. [BP] Let B,Z,X, u and η be as in Definition 6.2 and consider

the canonical triple (X1, j, ũ) associated to (B,Z,X, u, η).

Let X ′ be a Banach space, let j′ : X → X ′ be an isometric embedding and

let u′ : B → X ′ be a linear operator with ‖u′‖ 6 1. Assume that the following

diagram commutes:

B
u′ // X ′

Z

Id

OO

u
// X

j′

OO

Assume, moreover, that the triple (X ′, j′, u′) satisfies the minimality property

described in Lemma 6.5. That is, whenever F is a Banach space and T : X → F

and v : B → F are bounded linear operators such that v(z) = T
(
u(z)

)
for all

z ∈ Z, then there exists a unique bounded linear operator φ′ : X ′ → F such that

v = φ′ ◦ ũ, T = φ′ ◦ j and ‖φ‖ 6 max{‖T‖, ‖v‖}.
Then there exists a linear isometry I : X1 → X ′ such that I ◦ j = j′.

Proof. The proof is essentially a consequence of the minimality of the canonical

triple (X1, j, ũ) established in Lemma 6.5 and of our assumption that the triple

(X ′, j′, u′) is also minimal. Indeed, there exist two unique linear operators

φ : X1 → X ′ and φ′ : X ′ → X1 satisfying the following properties.

(a) ‖φ‖ 6 1 and ‖φ′‖ 6 1.

(b) j′ = φ ◦ j and j = φ′ ◦ j′.

(c) u′ = φ ◦ ũ and ũ = φ′ ◦ u′.

We claim that φ′ ◦ φ and φ ◦ φ′ are the identity operators on X1 and X ′ re-

spectively. This fact and properties (a) and (b) above yield that the operator

φ : X1 → X ′ is the desired isometry.

As the argument is symmetric it is enough to show that φ′ ◦φ is the identity

on X1. To this end we argue as follows. We set F = X1. We define T : X → F

and v : B → F by T = φ′ ◦ φ ◦ j and v = ũ. Property (b) above implies that

T = j. Therefore, the following diagram commutes:

B
v // F

Z

Id

OO

u
// X

T

OO
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By Lemma 6.5, there exists a unique operator S : X1 → F such that T = S ◦ j.
Denote by S′ the identity operator on X1 and by S′′ the operator φ′ ◦ φ. Since

T = φ′ ◦ φ ◦ j = j, we see that T = S ◦ j = S′ ◦ j = S′′ ◦ j. Invoking the

uniqueness of S, we conclude that S′ = S′′. In other words, the operator φ′ ◦ φ
is the identity operator on X1. The proof is completed.

6.2 Admissible embeddings

In this section we will continue our study of the canonical triple (X1, j, ũ). In

particular we will focus on the properties of the isometric embedding j. Since the

kind of questions addressed in this section do not depend on the whole structure

of the canonical triple, one is naturally led to take an abstract approach to the

study of the embedding j. This is the content of the following definition due to

Bourgain and Pisier.

Definition 6.7. [BP] Let X and X ′ be two Banach spaces and η 6 1. Let

J : X → X ′ be an isometric embedding. We say that the isometric embedding

J is η-admissible if there exist a Banach space B, a subspace Z of B and an

operator u : Z → X with ‖u‖ 6 η such that the following is satisfied. If (X1, j, ũ)

is the canonical triple associated to (B,Z,X, u, η), then there exists an isometry

T : X1 → X ′ making the following diagram commutative:

B
ũ // X1

T // X ′

Z

Id

OO

u
// X

j

OO

Id
// X

J

OO

We call the quadruple (B,Z, u, T ) as the witness of the η-admissibility of the

embedding J : X → X ′.

We will present a characterization of η-admissible embeddings which will

be very useful in the arguments below. To state it we need to introduce the

following terminology. Let X and Y be Banach spaces and let π : X → Y

be a surjective operator. We say that π is a metric surjection if the induced

isomorphism between X/Ker(π) and Y is an isometry. Notice that a linear

surjection π : X → Y is a metric surjection if and only if ‖π‖ 6 1 and for

every y ∈ Y and every ε > 0 there exists x ∈ X with π(x) = y and such that

‖x‖ − ε 6 ‖y‖ 6 ‖x‖.

Lemma 6.8. [BP] Let X and X ′ be Banach spaces and let J : X → X ′ be an

isometric embedding. Also let η 6 1. Then the following are equivalent.

(i) The embedding J is η-admissible.
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(ii) There exist a Banach space E and a metric surjection π : E ⊕1 X → X ′

such that for every e ∈ E and every x ∈ X we have

‖π(e, x)‖ > ‖x‖ − η‖e‖

and π(0, x) = J(x).

Proof. Assume, first, that J is η-admissible. Let (B,Z, u, T ) be the quadruple

witnessing the η-admissibility of J and consider the canonical triple (X1, j, ũ)

associated to (B,Z,X, u, η). By Definition 6.7, we may actually assume that

X ′ = X1 and J = j. As in Definition 6.2, let N = {(z,−u(z)) : z ∈ Z} and

recall that X1 = (B⊕1X)/N . Also let Q : B⊕1X → X1 be the natural quotient

map. We set E = B and π = Q, and we claim that these choices satisfy all

properties required in part (ii). Indeed, it is clear that π is a metric surjection

and π(0, x) = j(x) for all x ∈ X. Moreover, for every b ∈ B and every x ∈ X
we have

‖Q(b, x)‖ = inf{‖(b, x) + (z,−u(z))‖ : z ∈ Z}
> inf{η‖z + b‖+ ‖x− u(z)‖ : z ∈ Z}
> inf{η‖z‖ − η‖b‖+ ‖x‖ − η‖z‖ : z ∈ Z}
> ‖x‖ − η‖b‖

as desired.

Conversely, let E be the Banach space and let π : E ⊕1 X → X ′ be the

metric surjection described in part (ii). Notice that if (e, x) ∈ Ker(π), then

0 = ‖π(e, x)‖ > ‖x‖ − η‖e‖. Therefore,

‖x‖ 6 η‖e‖ (6.1)

for all (e, x) ∈ Ker(π). Let Z be the projection of Ker(π) into E. Formally,

Z = {e ∈ E : ∃x ∈ X with π(e, x) = 0}.

Fix z ∈ Z and let x, y ∈ X such that π(z, x) = π(z, y) = 0. Then π(0, x−y) = 0

which yields, by our assumptions, that J(x − y) = 0. Since J is an isometry,

we conclude that x = y. What we have just proved is that there exists a map

w : Z → X such that
(
z, w(z)

)
∈ Ker(π) for every z ∈ Z. Clearly w is linear.

Invoking (6.1), we obtain that ‖w‖ 6 η. Set u = −w and let (X1, j, ũ) be

the canonical triple associated to (E,Z,X, u, η). We define T : X1 → X ′ as

follows. Let α ∈ X1 and select e ∈ E and x ∈ X such that α = Q(e, x). We set

T (α) = π(e, x). It is easy to check that T is a well-defined isometry and that

the following diagram commutes:

E
ũ // X1

T // X ′

Z

Id

OO

u
// X

j

OO

Id
// X

J

OO
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Hence, the embedding J : X → X ′ is η-admissible. The proof is completed.

We are ready to begin the analysis of η-admissible embeddings.

6.2.1 Stability under compositions

Lemma 6.9. [BP] Let X,X ′, X ′′ be Banach spaces and η 6 1. Let J : X → X ′

and J ′ : X ′ → X ′′ be isometric embeddings and assume that both J and J ′ are

η-admissible. Then so is J ′ ◦ J .

Proof. We will use the characterization of η-admissibility established in Lemma

6.8. Specifically, by Lemma 6.8, there exist two Banach spaces E and E′ and a

pair π : E ⊕1 X → X ′ and π′ : E′ ⊕1 X
′ → X ′′ of metric surjections satisfying

the properties described in part (ii) of Lemma 6.8 for the isometric embeddings

J and J ′ respectively. We set E′′ = E ⊕1E
′ and we define π′′ : E′′ ⊕1X → X ′′

by the rule

π′′
(
(e, e′), x

)
= π′

(
e′, π(e, x)

)
for every (e, e′) ∈ E′′ and every x ∈ X. We claim that the Banach E′′ and the

operator π′′ witness that the isometric embedding J ′ ◦J is η-admissible. To see

this notice first that π′′ is a metric surjection and π′′(0, x) = J ′
(
J(x)

)
. What

remains is to show that for every (e, e′) ∈ E′′ and every x ∈ X we have

‖π′′
(
(e, e′), x

)
‖ > ‖x‖ − η‖(e, e′)‖ = ‖x‖ − η(‖e‖+ ‖e′‖).

Indeed, invoking the corresponding properties of π′ an π respectively, we see

that

‖π′′
(
(e, e′), x

)
‖ = ‖π′

(
e′, π(e, x)

)
‖ > ‖π(e, x)‖ − η‖e′‖

> ‖x‖ − η‖e‖ − η‖e′‖ = ‖x‖ − η(‖e‖+ ‖e′‖).

The proof is completed.

6.2.2 Stability under quotients

Lemma 6.10. [BP] Let X,X ′ be two Banach spaces, let Y be a subspace of X

and let η 6 1. Let J : X → X ′ be an isometric embedding and assume that J

is η-admissible. Then the induced isometric embedding J̄ : X/Y → X ′/J(Y ) is

η-admissible.

Proof. Let (B,Z, u, T ) be the quadruple witnessing that the isometric embed-

ding J is η-admissible. Let (X1, j, ũ) be the canonical triple associated to

(B,Z,X, u, η). Clearly we may assume that X ′ = X1 and J = j. Thus, what

we have to show is that the induced isometric embedding j : X/Y → X1/j(Y )

is η-admissible.
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Let q : X → X/Y be the natural quotient map and define w : Z → X/Y by

w = q◦u. Notice that ‖w‖ 6 η. Let (X2, j2, w̃) be the canonical triple associated

to (B,Z,X/Y,w, η). The proof will be completed once we show that there exists

an isometry S : X2 → X1/j(Y ) making the following diagram commutative:

B
w̃ // X2

S // X1/j(Y )

Z

Id

OO

w
// X/Y

j2

OO

Id
// X/Y

j

OO

We define the desired isometry S as follows. Let Q2 : B ⊕1 (X/Y ) → X2 and

Q1 : B ⊕1 X → X1 be the natural quotient maps. Let α ∈ X2 be arbitrary. We

select b ∈ B and γ ∈ X/Y such that α = Q2(b, γ). There exists x ∈ X such

that γ = x+Y . We set S(α) = Q1(b, x) + j(Y ). It is easy to check that S is an

isometry making the above diagram commutative. The proof is completed.

6.2.3 Metric properties

The isomorphic properties of the resulting space in the Bourgain–Pisier con-

struction are consequences of the metric properties of Kisliakov’s embedding,

and in particular, of the metric properties of η-admissible embeddings. We

isolate, below, the crucial inequality satisfied by all η-admissible embeddings.

Lemma 6.11. Let X,X ′ be Banach spaces, let J : X → X ′ be an isometric

embedding and let η 6 1. Assume that J is η-admissible. Let q : X ′ → X ′/J(X)

be the natural quotient map. Consider a finite sequence α0, . . . , αk in X ′ and

assume that α0 + · · ·+ αk ∈ J(X). Then

‖α0‖+ · · ·+ ‖αk‖ > ‖α0 + · · ·+αk‖+ (1− η) ·
[
‖q(α0)‖+ · · ·+ ‖q(αk)‖

]
. (6.2)

Inequality (6.2) appears in the work of Bourgain and Pisier in a probabilistic

form. Actually, this probabilistic form is easily seen to be equivalent to inequal-

ity (6.2). The reader will find more details in Appendix B.5. We proceed to the

proof of Lemma 6.11.

Proof of Lemma 6.11. As in the proof of Lemma 6.10, we may assume that J

is the isometric embedding of a canonical triple. Precisely, let (B,Z, u, T ) be

the quadruple witnessing that the isometric embedding J is η-admissible. Let

(X1, j, ũ) be the canonical triple associated to (B,Z,X, u, η). In what follows

we will assume X ′ = X1 and J = j. Therefore, X ′ = X1 = (B ⊕1 X)/N where

N = {(z,−u(z)) : z ∈ Z}. Let Q : B ⊕1X → X1 be the natural quotient map

and recall that j(x) = Q(0, x) for all x ∈ X.

Let ε > 0 be arbitrary. We select a finite sequence x0, . . . , xk in X and a

finite sequence b0, . . . , bk in B such that for every n ∈ {0, . . . , k} the following

are satisfied.
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(a) αn = Q(bn, xn).

(b) ‖xn‖+ ‖bn‖ − ε/(k + 1) 6 ‖αn‖.

By our assumptions, we have α0 + · · ·+αk ∈ j(X). Hence, there exists a vector

x ∈ X such that α0 + · · ·+ αk = j(x) = Q(0, x). It follows that

Q(b0 + · · ·+ bk, x0 + · · ·+ xk − x) = 0

and so, there exists a vector z ∈ Z such that

(c) b0 + · · ·+ bk = z and

(d) x0 + · · ·+ xk − x = −u(z).

The above equalities and the fact that j is an isometric embedding imply that

‖x0‖+ · · ·+ ‖xk‖ > ‖x0 + · · ·+ xk‖ = ‖x− u(z)‖ > ‖x‖ − ‖u(z)‖
= ‖j(x)‖ − ‖u(z)‖ = ‖α0 + · · ·+ αk‖ − ‖u(z)‖
> ‖α0 + · · ·+ αk‖ − η‖z‖
= ‖α0 + · · ·+ αk‖ − η‖b0 + · · ·+ bk‖
> ‖α0 + · · ·+ αk‖ − η

[
‖b0‖+ · · ·+ ‖bk‖

]
. (6.3)

Adding in both sides of inequality (6.3) the quantity ‖b0‖+ · · ·+‖bk‖ and taking

into account property (b) above, we obtain that

ε+ ‖α0‖+ · · ·+ ‖αk‖ > ‖α0 + · · ·+ αk‖+ (1− η) ·
[
‖b0‖+ · · ·+ ‖bk‖

]
. (6.4)

Now notice that for every n ∈ {0, . . . , k} we have

(e) ‖q(αn)‖ 6 ‖bn‖.

Indeed, fix n ∈ {0, . . . , k} and observe that

‖q(αn)‖ = inf{‖Q(bn, xn) + j(x′′)‖ : x′′ ∈ X}
= inf{‖Q(bn, xn) +Q(0, x′′)‖ : x′′ ∈ X} 6 ‖Q(bn, 0)‖ 6 ‖bn‖.

Plugging in (6.4) the estimate in (e), we see that

ε+ ‖α0‖+ · · ·+ ‖αk‖ > ‖α0 + · · ·+ αk‖+ (1− η) ·
[
‖q(α0)‖+ · · ·+ ‖q(αk)‖

]
.

Since ε > 0 was arbitrary, inequality (6.2) follows. The proof is completed.

We close this section by recording the following special case of Lemma 6.11.

Corollary 6.12. Let X,X ′ be Banach spaces, let J : X → X ′ be an isometric

embedding and let η 6 1. Assume that J is η-admissible. Let q : X ′ → X ′/J(X)

be the natural quotient map. Consider two vectors α and β in X ′ and assume

that α+ β ∈ J(X). Then

‖α‖+ ‖β‖ > ‖α+ β‖+ (1− η) ·
[
‖q(α)‖+ ‖q(β)‖

]
. (6.5)
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6.3 Inductive limits of finite-dimensional spaces

A system of isometric embeddings is a sequence (Xn, jn) where (Xn) is a se-

quence of Banach spaces and jn : Xn → Xn+1 is an isometric embedding for

every n ∈ N. The inductive limit of a system (Xn, jn) of isometric embeddings

is a Banach space X defined as follows. First we consider the vector subspace of∏
nXn consisting of all sequences (xn) such that jn(xn) = xn+1 for all n large

enough. We equip this subspace with the semi-norm ‖(xn)‖ = lim ‖xn‖. Let

X be the vector space obtained after passing to the quotient by the kernel of

that semi-norm. The inductive limit X of the system (Xn, jn) is then defined

to be the completion of X . Notice that there exists a sequence (Jn) of isometric

embeddings Jn : Xn → X such that Jn+1 ◦ jn = Jn for every n ∈ N and if

En = Jn(Xn), then the union
⋃
nEn is dense in X. Hence, in practice, we

may do as if the sequence (Xn) was an increasing (with respect to inclusion)

sequence of subspaces of a bigger space and we may identify the space X with

the closure of the vector space
⋃
nXn.

The main result in this section is the following theorem due to Bourgain and

Pisier.

Theorem 6.13. [BP] Let 0 < η < 1. Let (Fn, jn) be a system of isometric

embeddings where the sequence (Fn) consists of finite-dimensional Banach spaces

and for every n ∈ N the isometric embedding jn : Fn → Fn+1 is η-admissible.

Then the inductive limit of the system (Fn, jn) has the Radon–Nikodym and the

Schur properties.

Theorem 6.13 is the basic tool for verifying the crucial properties of the

Bourgain–Pisier construction. Actually in these notes we will not use the full

power of Theorem 6.13 but only the fact that the inductive limit is a Schur

space. Therefore, in this section we will present only the proof of this property.

A proof that the inductive limit has the Radon–Nikodym property can be found

in Appendix B.5.

We will need the following “unconditional” version of Mazur’s theorem.

Lemma 6.14. Let (zk) be a weakly null sequence in a Banach space X. Then

for every ε > 0 there exist m0 < m1 < · · · < mj in N and a0, . . . , aj ∈ R+ with∑j
i=0 ai = 1 and such that

max
{∥∥ j∑

i=0

εiaizmi
∥∥ : ε0, . . . , εj ∈ {−1, 1}

}
< ε. (6.6)

Proof. Clearly we may assume that X = span{zk : k ∈ N}. By Theorem 1.8, we

may also assume that X is a subspace of C(2N), and so, each zk is a continuous

function on 2N. By Lebesgue’s dominated convergence theorem, a sequence (xk)

in C(2N) is weakly null if and only if (xk) is bounded and pointwise convergent
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to 0. Hence, setting yk = |zk| for every k ∈ N, we see that the sequence (yk) is

also weakly null. We apply Mazur’s theorem to the sequence (yk) and the given

ε > 0 and we find m0 < · · · < mj in N and a0, . . . , aj ∈ R+ with
∑j
i=0 ai = 1

and such that ‖
∑j
i=0 aiymi‖ < ε. Finally notice that

max
{∥∥ j∑

i=0

εiaizmi
∥∥
∞ : ε0, . . . , εj ∈ {−1, 1}

}
6
∥∥ j∑
i=0

aiymi
∥∥
∞ < ε.

The proof is completed.

We proceed to the proof of Theorem 6.13.

Proof of Theorem 6.13: the Schur property. Fix 0 < η < 1. Let (Fn, jn) be a

system of isometric embeddings such that each Fn is finite-dimensional and for

every n ∈ N the isometric embedding jn : Fn → Fn+1 is η-admissible. Let X be

the inductive limit of the system (Fn, jn). We view the sequence (Fn) as being an

increasing (with respect to inclusion) sequence of finite-dimensional subspaces

of X such that
⋃
n Fn is dense in X. For every n ∈ N by qn : X → X/Fn

we shall denote the natural quotient map, while for every pair n,m ∈ N with

n < m by I(n,m) : Fn → Fm we shall denote the inclusion operator. By our

assumptions, the isometric embedding I(n, n + 1): Fn → Fn+1 is η-admissible

for every n ∈ N. Hence, by Lemma 6.9, we see that the isometric embedding

I(n,m) is also η-admissible for every pair n,m ∈ N with n < m. This yields

the following claim.

Claim 6.15. Let 0 < θ 6 1 and let (wk) be a normalized sequence in X. Also

let {n0 < n1 < · · · } be an infinite subset of N. Assume that the following hold.

(i) wk ∈ Fnk for every k ∈ N.

(ii) ‖qnk(wk′)‖ > θ for every k, k′ ∈ N with k′ > k.

Then for every m0 < · · · < mj in N and every a0, . . . , aj in R there exist

ε0, . . . , εj ∈ {−1, 1} such that

∥∥ j∑
i=0

εiaiwmi
∥∥ > (1− η) · θ ·

j∑
i=0

|ai|. (6.7)

Proof of Claim 6.15. Fix m0 < · · · < mj in N and a0, . . . , aj in R. Recursively,

we will select the signs ε0, . . . , εj in such a way that for every l 6 j we have

∥∥ l∑
i=0

εiaiwmi
∥∥ > (1− η) · θ ·

l∑
i=0

|ai|. (6.8)
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We set ε0 = 1. Assume that for some l < j we have selected ε0, . . . , εl ∈ {−1, 1}
so that (6.8) is satisfied. We set

z =

l∑
i=0

εiaiwmi , x = al+1wml+1
, α = z + x and β = z − x.

Notice that

α, β ∈ Fnml+1
and α+ β = 2z ∈ Fnml .

The inclusion operator I(nml , nml+1
) is η-admissible. Therefore, by inequality

(6.5) in Corollary 6.12, property (ii) in the statement of the claim and our

inductive hypothesis, we obtain that

‖α‖+ ‖β‖ > 2 · (1− η) · θ ·
l+1∑
i=0

|ai|.

Hence, there is εl+1 ∈ {−1, 1} so that
∥∥∑l+1

i=0 εiaiwmi
∥∥ > (1− η) · θ ·

∑l+1
i=0 |ai|.

The recursive selection is completed. The claim is proved.

After this preliminary discussion we are ready to prove that the inductive

limit X has the Schur property. We will argue by contradiction. So assume

that there exists a normalized weakly null sequence (xk) in X. By an obvious

approximation argument, we may assume that

{xk : k ∈ N} ⊆
⋃
n

Fn. (6.9)

Claim 6.16. For every n ∈ N we have lim sup ‖qn(xk)‖ > 1/3.

Proof of Claim 6.16. Suppose not. Then, by passing to a subsequence of (xk) if

necessary, we may find a sequence (yk) in Fn such that ‖xk+yk‖ 6 1/3 for every

k ∈ N. The sequence (yk) is bounded and the space Fn is finite-dimensional.

Therefore, by passing to further subsequences, we may assume that there exists

a vector y ∈ Fn such that yk → y. The sequence (xk + yk) is weakly convergent

to the vector y, and so,

‖y‖ 6 lim sup ‖xk + yk‖ 6 1/3. (6.10)

On the other hand for every k ∈ N we have

‖yk‖ = ‖(xk + yk)− xk‖ > ‖xk‖ − ‖xk + yk‖ = 1− ‖xk + yk‖ > 2/3.

Hence ‖y‖ > 2/3 in contradiction with (6.10) above. The claim is proved.

By inclusion (6.9) and Claim 6.16, we may select a subsequence (zk) of (xk)

and an infinite subset {n0 < n1 < · · · } of N such that the following are satisfied.
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(a) The sequence (zk) is normalized and weakly null.

(b) zk ∈ Fnk for every k ∈ N.

(c) ‖qnk(zk′)‖ > 1/4 for every k, k′ ∈ N with k′ > k.

We have reached the contradiction. Indeed, by (a) above, we may apply Lemma

6.14 to the sequence (zk) and ε = (1− η)/8. Hence, there exist m0 < · · · < mj

in N and a0, . . . , aj ∈ R+ with
∑j
i=0 ai = 1 and such that

max
{∥∥ j∑

i=0

εiaizmi
∥∥ : ε0, . . . , εj ∈ {−1, 1}

}
<

1− η
8

.

This is clearly impossible by Claim 6.15. The proof of Theorem 6.13 is com-

pleted.

6.4 The construction

This section is devoted to the proof of Theorem 6.1. So, let λ > 1 and let X

be a separable Banach space. In the argument below we shall use the following

simple fact.

Fact 6.17. Let H be a finite-dimensional Banach space and let ε > 0. Then

there exist m ∈ N, a subspace Z of `m∞ and an isomorphism T : Z → H satisfying

‖z‖ 6 ‖T (z)‖ 6 (1 + ε)‖z‖ for every z ∈ Z.

We fix 0 < η < 1 such that 1
λ < η < 1. We also fix ε > 0 with 1 + ε < λη.

Let (Fn) be an increasing sequence of finite-dimensional subspaces of X such

that
⋃
n Fn is dense in X (the sequence (Fn) is not necessarily strictly increasing

since we are not assuming that the space X is infinite-dimensional). Recursively,

we shall construct

(C1) a system (En, jn) of isometric embeddings, and

(C2) a sequence (Gn) of finite-dimensional spaces

such that for every n ∈ N the following are satisfied.

(P1) Gn ⊆ En and G0 = {0}.

(P2) The embedding jn : En → En+1 is η-admissible and E0 = X.

(P3) (jn−1 ◦ · · · ◦ j0)(Fn−1) ∪ jn−1(Gn−1) ⊆ Gn for every n > 1.

(P4) d(Gn, `
mn
∞ ) 6 λ where dim(Gn) = mn > n.
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As the first step is identical to the general one, we may assume that for some

k ∈ N with k > 1 the spaces G0, . . . , Gk and E0, . . . , Ek as well as the η-

admissible isometric embeddings j0, . . . , jk−1 have been constructed. Let Hk

be the subspace of Ek spanned by (jk−1 ◦ · · · ◦ j0)(Fk) ∪ Gk. (If k = 0, then

we set H0 = F0.) Let mk be the least integer with mk > k + 1 and for which

there exist a subspace Zk of `mk∞ and an isomorphism T : Zk → Hk satisfying

‖z‖ 6 ‖T (z)‖ 6 (1 + ε)‖z‖ for every z ∈ Zk. By Fact 6.17, we see that mk is

well-defined. Define u : Zk → Ek by

u(z) =
1

λ
T (z) (6.11)

and notice that u(Zk) = Hk, ‖u‖ 6 η and ‖u−1|Hk‖ 6 λ. Let (Y, j, ũ) be the

canonical triple associated to (`mk∞ , Zk, u, Ek, η). We set Ek+1 = Y , jk+1 = j

and Gk+1 = ũ(`mk∞ ). By Proposition 6.3 and Lemma 6.4, the spaces Gk+1 and

Ek+1, and the embedding jk+1 satisfy (P1)–(P4) above. The construction is

completed.

Now let Z be the inductive limit of the system (En, jn). As we have remarked

in Section 6.3, the sequence (En) can be identified with an increasing sequence

of subspaces of Z. Under this point of view, we let Lλ[X] be the closure of⋃
nGn. By property (P3), we see that the space Lλ[X] contains an isometric

copy of X while, by property (P4) and Fact B.11, it follows that the space Lλ[X]

is L∞,λ+. What remains is to analyze the quotient Lλ[X]/X.

To this end notice first that Lλ[X]/X naturally embeds into Z/X. For

every n ∈ N let Jn : En/X → En+1/X be the isometric embedding induced

by jn : En → En+1. Observe that the space Z/X is isometric to the inductive

limit of the system (En/X, Jn). By Lemma 6.10 and property (P2) above, we

see that the isometric embedding Jn is η-admissible for every n ∈ N. Finally,

notice that each En/X is finite-dimensional. Indeed, by Proposition 6.3, for

every n ∈ N the space En+1/En is isometric to `mn∞ /Zn. Using this our claim

follows by a straightforward induction. Therefore, Theorem 6.13 can be applied

to the system (En/X, Jn) yielding, in particular, that the space Z/X has the

Radon–Nikodym and the Schur properties. As these properties are inherited to

subspaces and Lλ[X]/X is isometric to a subspace of Z/X, we conclude that

the quotient Lλ[X]/X has the Radon–Nikodym and the Schur properties. The

proof of Theorem 6.1 is completed.

6.5 Parameterizing the construction

This section is devoted to the proof of the following parameterized version of

Theorem 6.1.
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Theorem 6.18. [D3] For every λ > 1 the set Lλ ⊆ SB× SB defined by

(X,Y ) ∈ Lλ ⇔ Y is isometric to Lλ[X]

is analytic.

Proof. Let λ > 1 be given and fix η > 0 and ε > 0 such that 1
λ < η < 1 and

1 + ε < λη. Below we will adopt the following notational conventions. By Ω we

shall denote the Borel subset of SB× SB× C(2N)N × C(2N)N defined by(
X,Y, (xn), (yn)

)
∈ Ω ⇔ ∀n ∈ N (xn ∈ X and yn ∈ Y ) and

(xn) is dense in X, (yn) is dense in Y,

Y ⊆ X and ∀n ∈ N ∃m ∈ N with yn = xm.

That is, an element
(
X,Y, (xn), (yn)

)
∈ Ω codes a separable Banach space X,

a dense sequence (xn) in X, a subspace Y of X and a subsequence (yn) of (xn)

which is dense in Y . Given ω =
(
X,Y, (xn), (yn)

)
∈ Ω we set p0(ω) = X and

p1(ω) = Y . We will reserve the letter t to denote elements of Ω<N. The letter

α shall be used to denote elements of ΩN. For every nonempty t ∈ Ω<N and

every i < |t| we set Xt
i = p0

(
t(i)
)

and Y ti = p1

(
t(i)
)
. Respectively, for every

α ∈ ΩN and every i ∈ N we set Xα
i = p0

(
α(i)

)
and Y αi = p1

(
α(i)

)
. If X,Y and

Z are nonempty sets and f : X × Y → Z is a map, then for every x ∈ X by fx

we shall denote the function fx : Y → Z defined by fx(y) = f(x, y) for every

y ∈ Y . Finally, by dm : SB → C(2N) (m ∈ N) we denote the sequence of Borel

maps described in property (P2) in Section 2.1.1.

The proof of Theorem 6.18 is based on the fact that we can appropriately en-

code the Bourgain–Pisier construction so that it can be performed “uniformly”

in X. To this end we introduce the following terminology.

A. Let k ∈ N with k > 2. A code of length k is a pair (C, φ) where C is a Borel

subset of Ωk and φ : C × C(2N) → C(2N) is a Borel map such that for every

t ∈ C the following are satisfied.

(C1) For every i < k the space Y ti is finite-dimensional and Y t0 = {0}.

(C2) The map φt : Xt
k−2 → C(2N) is a linear isometric embedding satisfying

φt(Xt
k−2) ⊆ Xt

k−1 and φt(Y tk−2) ⊆ Y tk−1.

The code of length 1 is the pair (C1, φ1) where C1 ⊆ Ω and φ1 : C1 × C(2N) →
C(2N) are defined by

t =
(
X,Y, (xn), (yn)

)
∈ C1 ⇔ Y = {0}

and φ1(t, x) = x for every t ∈ C1 and every x ∈ C(2N). Clearly C1 is Borel

and φ1 is a Borel map. Notice that for every X ∈ SB there exists t ∈ C1 with

X = Xt
0.
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B. Let {(Ck, φk) : k > 1} be a sequence such that for every k > 1 the pair

(Ck, φk) is a code of length k. We say that the sequence {(Ck, φk) : k > 1} is a

tree-code if for every k,m ∈ N with 1 6 k 6 m we have Ck =
{
t|k : t ∈ Cm

}
.

The body C of a tree-code {(Ck, φk) : k > 1} is defined by

C =
{
α ∈ ΩN : α|k ∈ Ck ∀k > 1

}
.

Clearly C is a Borel subset of ΩN.

Let {(Ck, φk) : k > 1} be a tree-code and let C be its body. For ev-

ery k > 1 the map φk induces a map Φk : C × C(2N) → C(2N) defined by

Φk(α, x) = φk(α|k, x) for every α ∈ C and every x ∈ C(2N). We need to

introduce two more maps. First, for every n,m ∈ N with n < m we define

Φn,m : C × C(2N) → C(2N) recursively by the rule Φn,n+1(α, x) = Φn+2(α, x)

and Φn,m+1(α, x) = Φm+2

(
α,Φn,m(α, x)

)
. Also we set Jn = Φn+2 for every

n ∈ N. We isolate, for future use, the following fact concerning these maps.

Its proof is a straightforward consequence of the relevant definitions and of

condition (C2) above.

Fact 6.19. Let {(Ck, φk) : k > 1} be a tree-code and let C be its body. Then the

following are satisfied.

(i) For every n, k,m ∈ N with k > 1 and n < m the maps Φk and Φn,m
are Borel. Moreover, for every α ∈ C we have Φαn,m(Xα

n ) ⊆ Xα
m and

Φαn,m(Y αn ) ⊆ Y αm.

(ii) Let α ∈ C. Then for every n ∈ N the map Jαn |Xαn is a linear isometric

embedding satisfying Jαn (Xα
n ) ⊆ Xα

n+1 and Jαn (Y αn ) ⊆ Y αn+1.

C. Let {(Ck, φk) : k > 1} be a tree-code and let C be its body. Also let α ∈ C.
Consider the sequence (Xα

0 , Y
α
0 , X

α
1 , Y

α
1 , . . . ) and notice that Y αn is a finite-

dimensional subspace of Xα
n for every n ∈ N. In the coding we are developing

the sequences (Xα
n ) and (Y αn ) will correspond to the sequences (En) and (Gn)

obtained by the Bourgain–Pisier construction performed to the space X = Xα
0 .

This is made precise using the auxiliary concept of λ-coherence which we are

about to introduce.

Let α ∈ C be arbitrary. For every n ∈ N let Fn(Xα
0 ) = span{di(Xα

0 ) : i 6 n}.
Clearly

(
Fn(Xα

0 )
)

is an increasing sequence of finite-dimensional subspaces of

Xα
0 with

⋃
n Fn(Xα

0 ) dense in Xα
0 . Let (Eαn , j

α
n ) be the system of isometric

embeddings and let (Gαn) be the sequence of finite-dimensional spaces obtained

by performing the construction described in Section 6.4 to the space Xα
0 , the

sequence
(
Fn(Xα

0 )
)

and the numerical parameters λ, η and ε. We say that the

tree-code {(Ck, φk) : k > 1} is λ-coherent if for every α ∈ C there exists a

sequence Tαn : Xα
n → Eαn (n > 1) of isometries such that Gαn = Tαn (Y αn ) for every
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n > 1 and making the following diagram commutative:

Eα0
jα0 // Eα1

jα1 // Eα2
jα2 // Eα3

jα3 // · · ·

Xα
0

Id

OO

Jα0 |Xα0

// Xα
1

Tα1

OO

Jα1 |Xα1

// Xα
2

Tα2

OO

Jα2 |Xα2

// Xα
3

Tα3

OO

Jα3 |Xα3

// · · ·

The basic property guaranteed by the above requirements is isolated in the

following fact (the proof is straightforward).

Fact 6.20. Let {(Ck, φk) : k > 1} be a λ-coherent tree-code and let C be its

body. Also let α ∈ C. Then the inductive limit of the system of embeddings

(Y αn , J
α
n |Y αn ) is isometric to the space Lλ[Xα

0 ].

We are ready to state the main technical step in the proof of Theorem 6.18.

Lemma 6.21. [D3] There exists a λ-coherent tree-code {(Ck, φk) : k > 1}.

Granting Lemma 6.21 the proof of Theorem 6.18 is completed as follows.

Let {(Ck, φk) : k > 1} be the λ-coherent tree-code obtained above. Denote by

C its body. By Fact 6.20, we have

(X,Y ) ∈ Lλ ⇔ ∃α ∈ ΩN with α ∈ C, X = Xα
0 and such that Y is isometric

to the inductive limit of the system (Y αn , J
α
n |Y αn ).

Let α ∈ C. There is a canonical dense sequence in the inductive limit Zα of the

system (Y αn , J
α
n |Y αn ). Indeed, by the discussion in Section 6.3, the sequence of

spaces (Y αn ) can be identified with an increasing sequence of subspaces of Zα.

Under this point of view, the sequence
(
dm(Y αn ) : n,m ∈ N

)
is a dense sequence

in Zα. Let {(ni,mi) : i ∈ N} be an enumeration of the set N × N such that

max{ni,mi} 6 i for every i ∈ N. It follows that

(X,Y ) ∈ Lλ ⇔ ∃(yi) ∈ C(2N)N ∃α ∈ ΩN with α ∈ C, X = Xα
0 and

Y = span{yi : i ∈ N} and ∀l ∈ N ∀b0, . . . , bl ∈ Q∥∥ l∑
i=0

biyi
∥∥ =

∥∥ l∑
i=0

biΦni,l+1

(
α, dmi(Y

α
ni)
)∥∥.

Invoking part (i) of Fact 6.19, we see that the above formula gives an analytic

definition of the set Lλ, as desired.

It remains to prove Lemma 6.21. To this end we need the following easy

fact.

Fact 6.22. Let S be a standard Borel space, let X be a Polish space and let

fn : S → X (n ∈ N) be a sequence of Borel maps. Then the map F : S → F (X),

defined by F (s) = {fn(s) : n ∈ N} for every s ∈ S, is Borel.
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We are ready to proceed to the proof of Lemma 6.21.

Proof of Lemma 6.21. The λ-coherent tree-code {(Ck, φk) : k > 1} will be con-

structed by recursion. For k = 1 let (C1, φ1) be the code of length 1 defined in

the beginning of the proof of Theorem 6.18. Assume that for some k > 1 and

every l 6 k we have constructed the code (Cl, φl) of length l. We will construct

the code (Ck+1, φk+1) of length k + 1.

First, we define recursively a family of Borel functions fl : Ck × C(2N) →
C(2N) (1 6 l 6 k) by the rule f1(t, x) = x and fl+1(t, x) = φl+1

(
t|l+1, fl(t, x)

)
.

Notice that f tk(Xt
0) ⊆ Xt

k−1 for every t ∈ Ck. Also let Fk−1 : SB → SB and

Hk : Ck → SB be defined by Fk−1(X) = span{di(X) : i 6 k − 1} and

Hk(t) = span
{
Y tk−1 ∪ f tk

(
Fk−1(Xt

0)
)}

respectively. Observe that for every X ∈ SB and every t ∈ Ck the spaces

Fk−1(X) and Hk(t) are both finite-dimensional subspaces of X and Xt
k−1 re-

spectively.

Claim 6.23. The maps Fk−1 and Hk are Borel.

Proof of Claim 6.23. For every s ∈ Qk consider the map fs : SB → C(2N) de-

fined by fs(X) =
∑k−1
i=0 s(i)di(X). Clearly fs is Borel. Notice that Fk−1(X)

is equal to the closure of the set {fs(X) : s ∈ Qk}. Invoking Fact 6.22, the

Borelness of the map Fk−1 follows. The proof that Hk is also Borel proceeds

similarly. The claim is proved.

We fix a dense sequence (σi) in 2N. For every d ∈ N with d > k we define

an operator vd : C(2N)→ `d∞ by

vd(f) =
(
f(σ0), . . . , f(σd−1)

)
.

Notice that ‖vd(f)‖ 6 ‖f‖. Moreover, observe that the map C(2N) 3 f 7→
‖vd(f)‖ is continuous. For every d > k let Bd be the subset of Ck defined by

t ∈ Bd ⇔ ∀f ∈ Hk(t) we have ‖f‖ 6 (1 + ε)‖vd(f)‖
⇔ ∀n ∈ N we have ‖dn(Hk(t))‖ 6 (1 + ε)‖vd

(
dn(Hk(t))

)
‖.

By the above formula, we see that Bd is Borel. Also observe that Ck =
⋃
d>k Bd.

We define recursively a partition {Pd : d > k} of Ck by the rule Pk = Bk and

Pd+1 = Bd+1 \ (Pk ∪ · · · ∪ Pd). Notice that Pd is a Borel subset of Bd.

Let d > k be arbitrary. Let E be the Banach space C(2N)⊕1 `
d
∞. Consider

the map N : Pd → Subs(E) defined by

N(t) =
{

(−f, λvd(f)) : f ∈ Hk(t)
}
.
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Arguing as in Claim 6.23, it is easy to see thatN is Borel. Let dm : Subs(E)→ E

(m ∈ N) be the sequence of Borel maps obtained by property (P2) in Section

2.1.1 applied for X = E. We recall that by dm : C(2N) → C(2N) (m ∈ N)

we denote the corresponding sequence obtained for X = C(2N). We may, and

we will, assume that d0(X) = 0 and d0(E′) = 0 for every X ∈ SB and every

E′ ∈ Subs(E). We fix a countable dense subset (rm) of `d∞ such that r0 = 0.

Let Q : Pd × E → R be the map

Q(t, e) = inf
{
‖e+ dm

(
N(t)

)
‖ : m ∈ N

}
.

Clearly Q is Borel. We fix a bijection 〈·, ·〉 : N×N→ N. For every n ∈ N by m0
n

and m1
n we shall denote the unique integers satisfying n = 〈m0

n,m
1
n〉. We define

Cd ⊆ Ωk+1 by

t′ ∈ Cd ⇔ t′|k ∈ Pd and if t′(k) =
(
X,Y, (xn), (yn)

)
and t = t′|k,

then ∀i ∈ N ∀b0, . . . , bi ∈ Q we have∥∥ i∑
n=0

bnxn
∥∥ = Q

(
t,

i∑
n=0

bn
(
dm0

n
(Xt

k−1), rm1
n

))
and

∀n ∈ N we have yn = x〈0,n〉.

Clearly the above formula defines a Borel subset of Ωk+1. Also observe that

Cd ∩ Cd′ = ∅ if d 6= d′.

Let us comment on some properties of the set Cd. Fix t′ ∈ Cd and set t = t′|k.

By definition, we have t ∈ Pd ⊆ Bd. It follows that the operator vd : Hk(t)→ `d∞
is an isomorphic embedding satisfying ‖vd(x)‖ 6 ‖x‖ 6 (1 + ε)‖vd(x)‖ for every

x ∈ Hk(t). We set Zt = vd
(
Hk(t)

)
and we define u : Zt → Xt

k−1 by

u(z) =
1

λ

(
vd|Hk(t)

)−1
(z).

Notice that ‖u‖ 6 η. As in Definition 6.2, let (X1, j, ũ) be the canonical triple

associated to (`d∞, Zt, u,X
t
k−1, η). There is a natural way to select a dense

sequence in X1. Indeed, let Qt : `
d
∞⊕1X

t
k−1 → X1 be the natural quotient map.

Setting αn = Qt
(
(rm1

n
, dm0

n
(Xt

k−1))
)

for every n ∈ N, we see that the sequence

(αn) is dense in X1. Let t′(k) =
(
Xt′

k , Y
t′

k , (xn), (yn)
)
. By the definition of the

set Cd, it follows that the map

X1 3 αn 7→ xn ∈ Xt′

k

can be extended to a linear isometry Tt′ : X1 → Xt′

k . In other words, we have

the following commutative diagram:

`d∞
ũ // X1

Tt′ // Xt′

k

Zt

Id

OO

u
// Xt

k−1

j

OO
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It is clear from what we have said that the map

Xt
k−1 3 dn(Xt

k−1) 7→ x〈n,0〉 ∈ Xt′

k

can be also extended to a linear isometric embedding J t
′
: Xt

k−1 → Xt′

k satisfying

J t
′
(Y tk−1) ⊆ Y t

′

k . Moreover, it easy to see that this extension can be done

“uniformly” in t′. Precisely, there exists a Borel map φd : Cd × C(2N)→ C(2N)

such that φd(t
′, x) = J t

′
(x) for every t′ ∈ Cd and every x ∈ Xt′|k

k−1 = Xt′

k−1.

We are finally in the position to construct the code (Ck+1, φk+1) of length

k + 1. First we set

Ck+1 =
⋃
d>k

Cd.

As we have already remarked the sets (Cd)d>k are pairwise disjoint. We define

φk+1 : Ck+1 × C(2N) → C(2N) as follows. Let (t′, x) ∈ Ck+1 × C(2N) and let d

be the unique integer with t′ ∈ Cd. We set φk+1(t′, x) = φd(t
′, x). Clearly the

pair (Ck+1, φk+1) is a code of length k + 1.

This completes the recursive construction of the family {(Ck, φk) : k > 1}.
The fact that the family {(Ck, φk) : k > 1} is a tree-code follows immediately

by the definition of the set Cd above. Moreover, as one can easily realize, the

tree-code {(Ck, φk) : k > 1} is in addition λ-coherent. The proof of Lemma 6.21

is completed.

As we have already indicated above, having completed the proof of Lemma

6.21 the proof of Theorem 6.18 is also completed.

6.6 Consequences

This section is devoted to applications of Theorems 6.1 and 6.18. To this end

we will need a result on quotient spaces which is of independent interest.

6.6.1 A result on quotient spaces

We begin by introducing some pieces of notation and some terminology. Let

2<N be the Cantor tree. For every s, t ∈ 2<N let s ∧ t denote the @-maximal

node w of 2<N with w v s and w v t. If s, t ∈ 2<N are incomparable with

respect to v, then we write s ≺ t provided that (s∧ t)a0 v s and (s∧ t)a1 v t.
We say that a subset D of 2<N is a dyadic subtree of 2<N if D can be written

in the form D = {st : t ∈ 2<N} so that for every t1, t2 ∈ 2<N we have t1 @ t2
(respectively, t1 ≺ t2) if and only if st1 @ st2 (respectively, st1 ≺ st2). It is easy

to see that such a representation of D as {st : t ∈ 2<N} is unique. In the sequel

when we write D = {st : t ∈ 2<N}, where D is a dyadic subtree, we will assume

that this is the canonical representation of D described above.
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Let O = {∅} ∪ {ta0 : t ∈ 2<N}. Namely, O is the subset of the Cantor tree

consisting of all sequences ending with 0. If D = {st : t ∈ 2<N} is a dyadic

subtree of 2<N, then we set OD = {st : t ∈ O}. Let hD : OD → N be the

unique bijection satisfying hD(st1) < hD(st2) if either |t1| < |t2|, or |t1| = |t2|
and t1 ≺ t2. By h : O → N we shall denote the bijection corresponding to the

Cantor tree itself.

Proposition 6.24. [D3] Let E be a minimal Banach space not containing `1.

Also let X be a Banach space and let Y be a subspace of X. Assume that the

quotient X/Y has the Schur property. Then the following are satisfied.

(i) If Y is non-universal, then so is X.

(ii) If Y does not contain an isomorphic copy of E, then neither X does.

Proof. (i) This part is essentially a consequence of a result due to Lindenstrauss

and Pe lczyński [LP2] asserting that the property of not containing an isomorphic

copy of C(2N) is a three-space property. However, we shall give a proof for this

special case which is more direct.

For every t ∈ 2<N let Vt = {σ ∈ 2N : t @ σ}; that is, Vt is the clopen subset

of 2N determined by the node t. We set ft = 1Vt . Clearly ft ∈ C(2N) and

‖ft‖∞ = 1. Let (tn) be the enumeration of the set O according to the bijection

h introduced above, and consider the corresponding sequence (ftn). The main

properties of the sequence (ftn) are summarized in the following claim.

Claim 6.25. The following hold.

(i) The sequence (ftn) is a normalized monotone Schauder basis of C(2N).

(ii) Let D = {st : t ∈ 2<N} be a dyadic subtree of 2<N and let (sn) be the enu-

meration of the set OD according to hD. Then the corresponding sequence

(fsn) is 1-equivalent to the basis (ftn).

(iii) For every t ∈ 2<N there exists a sequence (wn) in 2<N with t @ wn for

every n ∈ N and such that the sequence (fwn) is weakly null.

Proof of Claim 6.25. The proof of part (i) is similar to the proof of Claim 5.13.

Indeed, consider the sequence (ftn) and notice that span{ftn : n ∈ N} = C(2N).

To see that (ftn) is a monotone basic sequence let k,m ∈ N with k < m and

a0, . . . , am ∈ R. There exists σ ∈ 2N such that

∥∥ k∑
n=0

anftn
∥∥
∞ =

∣∣ k∑
n=0

anftn(σ)
∣∣.

Let l, j ∈ N with tl @ tj (by the properties of h this implies that l < j). There

exists a node s ∈ 2<N with tl @ s, |s| = |tj | and such that ftj (x) = 0 for
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every x ∈ Vs. Using this observation we see that there exists τ ∈ 2N such that

ftn(τ) = ftn(σ) if 0 6 n 6 k while ftn(τ) = 0 if k < n 6 m. Therefore,

∥∥ k∑
n=0

anftn
∥∥
∞ =

∣∣ k∑
n=0

anftn(σ)
∣∣ =

∣∣ m∑
n=0

anftn(τ)
∣∣ 6 ∥∥ m∑

n=0

anftn
∥∥
∞.

This shows that (ftn) is a normalized monotone Schauder basis of C(2N). Part

(ii) follows using essentially the same argument. Finally, part (iii) is an imme-

diate consequence of the relevant definitions. The claim is proved.

After this preliminary discussion we are ready to proceed to the proof of

part (i). Clearly it is enough to show that if the space X contains an iso-

morphic copy of C(2N), then so does Y . So, let Z be a subspace of X which

is isomorphic to C(2N). We fix an isomorphism T : C(2N) → Z and we set

K = ‖T‖ · ‖T−1‖. Also let Q : X → X/Y be the natural quotient map. The

basic step for constructing a subspace Y ′ of Y which is isomorphic to C(2N) is

given in the following claim.

Claim 6.26. Let (zn) be a normalized weakly null sequence in Z and let r > 0

be arbitrary. Then there exist k ∈ N and a vector y ∈ Y such that ‖zk − y‖ < r.

Proof of Claim 6.26. Consider the sequence
(
Q(zn)

)
. By our assumptions, it is

weakly null. The space X/Y has the Schur property. Hence, lim ‖Q(zn)‖ = 0.

Let k ∈ N with ‖Q(zk)‖ < r. By definition, there exists a vector y ∈ Y such

that ‖Q(zk)‖ 6 ‖zk − y‖ < r. The claim is proved.

Using part (iii) of Claim 6.25 and Claim 6.26, we may construct, recursively,

a dyadic subtree D = {st : t ∈ 2<N} of 2<N and a family {yt : t ∈ 2<N} in Y

such that, setting zt = T (fst)/‖T (fst)‖ for every t ∈ 2<N, we have∑
t∈2<N

‖zt − yt‖ <
1

2K
.

By [LT, Proposition 1.a.9] and part (ii) of Claim 6.25, if (tn) is the enumeration

of the set O according to the bijection h, then the corresponding sequence (ytn)

is equivalent to the sequence (ftn). By part (i) of Claim 6.25, it follows that

the subspace Y ′ = span{ytn : n ∈ N} of Y is isomorphic to C(2N). The proof of

part (i) is completed.

(ii) We argue by contradiction. So assume that there exists a subspace Z of

X which is isomorphic to E. As in part (i), we denote by Q : X → X/Y the

natural quotient map. The fact that the space E does not contain `1 yields that

the operator Q : Z → X/Y is strictly singular. This, in turn, implies that

dist(SZ′ , SY ) = min
{
‖z − y‖ : z ∈ Z ′, y ∈ Y and ‖z‖ = ‖y‖ = 1

}
= 0
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for every infinite-dimensional subspace Z ′ of Z. Hence, there exist a subspace

Z ′′ of Z and a subspace Y ′ of Y which are isomorphic. Since E is minimal,

we see that Z ′′ must contain an isomorphic copy of E. Hence so does Y , a

contradiction. The proof of Proposition 6.24 is completed.

6.6.2 Applications

We start with the following corollary.

Corollary 6.27. [D3] Let A be an analytic subset of NU. Then there exists

an analytic subset A′ of NU with the following properties.

(i) Every Y ∈ A′ has a Schauder basis.

(ii) For every X ∈ A there exists Y ∈ A′ containing an isometric copy of X.

Proof. Let L2 be the analytic subset of SB × SB obtained by Theorem 6.18

applied for λ = 2. We define A′ by

Y ∈ A′ ⇔ ∃X ∈ SB [X ∈ A and (X,Y ) ∈ L2].

Clearly A′ is analytic. By Theorem 6.1, part (i) of Proposition 6.24 and Theorem

B.12, the set A′ is as desired. The proof is completed.

Let X be a Banach space with a Schauder basis. As in Section 2.4, for every

normalized Schauder basis (en) of X and every separable Banach space Y by

TNC

(
Y,X, (en)

)
we shall denote the tree defined in (2.10).

Now let X be a non-universal separable Banach space and λ > 1. By

Theorem 6.1 and part (i) of Proposition 6.24, the space Lλ[X] is non-universal.

We have the following quantitative refinement of this fact.

Corollary 6.28. [D3] Let (en) be a normalized Schauder basis of C(2N) and

let λ > 1. Then there exists a map fλ : ω1 → ω1 such that for every ξ < ω1

and every separable Banach space X with o
(
TNC(X,C(2N), (en))

)
6 ξ we have

o
(
TNC(Lλ[X], C(2N), (en))

)
6 fλ(ξ).

In particular, there exists a map f : ω1 → ω1 such that for every countable

ordinal ξ, every separable Banach space X with o
(
TNC(X,C(2N), (en))

)
6 ξ

embeds isometrically into a Banach space Y with a Schauder basis satisfying

o
(
TNC(Y,C(2N), (en))

)
6 f(ξ).

Proof. By Theorem 2.17, the map

NU 3 X 7→ o
(
TNC(X,C(2N), (en))

)
is a Π1

1-rank on NU. Let ξ < ω1 be arbitrary and set

Aξ =
{
X ∈ NU : o

(
TNC(X,C(2N), (en))

)
6 ξ
}
.
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By part (i) of Theorem A.2, the set Aξ is analytic (in fact Borel). Let Lλ be

the analytic subset of SB× SB obtained by Theorem 6.18 applied for the given

λ. We define Bξ by

Y ∈ Bξ ⇔ ∃X ∈ SB [X ∈ Aξ and (X,Y ) ∈ Lλ].

As in Corollary 6.27, we see that Bξ is an analytic subset of NU. By part (ii)

of Theorem A.2, we have

sup
{
o
(
TNC(Y,C(2N), (en))

)
: Y ∈ Bξ

}
= ζξ < ω1.

We set fλ(ξ) = ζξ. Clearly the map fλ is as desired. The proof is completed.

We close this subsection by presenting the following analogues of Corollar-

ies 6.27 and 6.28 for the class NCX . They are both derived using identical

arguments as above.

Corollary 6.29. [D3] Let X be a minimal Banach space not containing `1.

Also let A be an analytic subset of NCX . Then there exists an analytic subset

A′ of NCX with the following properties.

(i) Every Y ∈ A′ has a Schauder basis.

(ii) For every Z ∈ A there exists Y ∈ A′ containing an isometric copy of Z.

Corollary 6.30. [D3] Let X be a minimal Banach space with a Schauder

basis and not containing `1. Let (en) be a normalized Schauder basis of X

and let λ > 1. Then there exists a map fXλ : ω1 → ω1 such that for every

ξ < ω1 and every separable Banach space Z with o
(
TNC(Z,X, (en))

)
6 ξ we

have o
(
TNC(Lλ[Z], X, (en))

)
6 fXλ (ξ).

In particular, there exists a map fX : ω1 → ω1 such that for every count-

able ordinal ξ, every separable Banach space Z with o
(
TNC(Z,X, (en))

)
6 ξ

embeds isometrically into a Banach space Y with a Schauder basis satisfying

o
(
TNC(Y,X, (en))

)
6 fX(ξ).

6.7 Comments and Remarks

1. As we have already mentioned, the method of extending operators presented

in Section 6.1 was invented by Kisliakov [Ki]. The reader can find in [Ki] and

[Pi1] further structural properties. We refer to the monograph of Pisier [Pi2]

for more information.

2. The Bourgain–Pisier construction was the outcome of the combination of

two major achievements of Banach space theory during the 1980s. The first

one is the Bourgain–Delbaen space [BD], the first example of a L∞-space not
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containing an isomorphic copy of c0. The second one is Pisier’s scheme developed

in [Pi1] for producing counterexamples to a conjecture of Grothendieck.

Our presentation follows closely the original one. We notice, however, that

the proof of Theorem 6.13 differs slightly from the one in [BP].

3. Theorem 6.18 and its consequences are taken from [D3]. We should point

out that no explicit bounds for the functions fλ and fXλ , obtained by Corollaries

6.28 and 6.30 respectively, are known.



Chapter 7

Strongly bounded classes of

Banach spaces

Let (P) be a property of Banach spaces and suppose that we are given a class

of separable Banach spaces such that every space in the class has property (P).

The main problem addressed in the chapter is whether we can find a separable

Banach space Y which has property (P) and contains an isomorphic copy of

every member of the given class. We will consider quite classical properties of

Banach spaces such as “being reflexive”, “having separable dual” and “being

non-universal”.

We will characterize those classes of separable Banach spaces admitting such

a universal space. The characterization will be a byproduct of a structural

property satisfied by the corresponding classes REFL, SD and NU introduced in

Chapter 2. In abstract form this structural property is isolated in the following

definition.

Definition 7.1. [AD] Let C ⊆ SB. We say that the class C is strongly bounded

if for every analytic subset A of C there exists Y ∈ C that contains an isomorphic

copy of every X ∈ A.

The verification that a certain class is strongly bounded proceeds in two

steps. In the first step one treats analytic classes of Banach spaces with a

Schauder basis. The universal space in such a case is constructed using the

tools presented in Chapters 3 and 4. In the second step one reduces the general

case to the case of spaces with a Schauder basis using the embedding results, as

well as their parameterized versions, developed in Chapters 5 and 6.

113
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7.1 Analytic classes of separable Banach spaces

and Schauder tree bases

This section is devoted to the proof of the following correspondence principle

between analytic classes of Banach spaces with a Schauder basis and Schauder

tree bases (see Definition 3.1).

Lemma 7.2. [AD] Let A be an analytic subset of SB such that every Y ∈ A has

a Schauder basis. Then there exist a separable Banach space X, a pruned B-tree

T on N×N and a normalized sequence (xt)t∈T in X such that the following are

satisfied.

(i) The family X = (X,N× N, T, (xt)t∈T ) is a Schauder tree basis.

(ii) For every Y ∈ A there exists σ ∈ [T ] with Y ∼= Xσ.

(iii) For every σ ∈ [T ] there exists Y ∈ A with Xσ
∼= Y .

Lemma 7.2 will be our basic tool for constructing universal spaces for cer-

tain classes of separable Banach spaces. Its proof is based on a technique in

descriptive set theory, introduced by Solovay, known as “unfolding”.

Proof of Lemma 7.2. Let U be Pe lczyński’s universal space for basic sequences

described in Theorem 1.9. Recall that the basis (un) of U is normalized and bi-

monotone, and notice that these properties are inherited by the subsequences

of (un). As in Section 2.5, for every L = {l0 < l1 < · · · } ∈ [N]∞ we set

UL = span{uln : n ∈ N}. By identifying the space U with one of its isometric

copies in C(2N), we see that the map Φ: [N]∞ → SB defined by Φ(L) = UL is

Borel.

Now let A be as in the statement of the lemma and set

A∼= = {Z ∈ SB : ∃Y ∈ A such that Z ∼= Y }.

That is, A∼= is the isomorphic saturation of A. By property (P7) in Section 2.1.1,

the equivalence relation ∼= of isomorphism is analytic in SB × SB. Therefore,

the set A∼= is analytic. Hence, the set

Ã = {L ∈ [N]∞ : ∃Y ∈ A with UL ∼= Y } = Φ−1(A∼=)

is also analytic. The definition of the set Ã, the universality of the basis (un) of

the space U and our assumptions on the set A, imply the following.

(a) For every L ∈ Ã there exists Y ∈ A with UL ∼= Y .

(b) For every Y ∈ A there exists L ∈ Ã with Y ∼= UL.
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The space [N]∞ is naturally identified as a closed subspace of the Baire space NN.

Hence, the set Ã can be seen as an analytic subset of NN. By Theorem 1.6, there

exists a pruned tree S on N×N such that Ã = proj[S]. Let T = S \{∅}; that is,

T is the B-tree on N× N corresponding to the tree S (see Section 1.2). Notice

that every node t of T is a pair (s, w) of nonempty finite sequences in N with

|s| = |w| and such that s is strictly increasing. For every t = (s, w) ∈ T we set

nt = max{n : n ∈ s} and we define xt = unt . Also we set X = span{xt : t ∈ T}.
Using properties (a) and (b) isolated above, it is easy to see that the tree T , the

space X and the family (xt)t∈T are as desired. The proof is completed.

We will also deal with analytic classes of Banach spaces having shrinking

Schauder bases. In these cases we will need the following variant of Lemma 7.2.

Lemma 7.3. [AD] Let A be an analytic subset of SB such that every Y ∈ A
has a shrinking Schauder basis. Then there exist a separable Banach space X,

a pruned B-tree T on N×N and a normalized sequence (xt)t∈T in X such that

the following are satisfied.

(i) The family X = (X,N× N, T, (xt)t∈T ) is a Schauder tree basis.

(ii) For every σ ∈ [T ] the basic sequence (xσ|n)n>1 is shrinking.

(iii) For every Y ∈ A there exists σ ∈ [T ] with Y ∼= Xσ.

(iv) For every σ ∈ [T ] there exists Y ∈ A with Xσ
∼= Y .

Proof. The proof follows the lines of the proof of Lemma 7.2. The extra in-

gredient is the use of the coding of basic sequences developed in Section 2.5.

Specifically, let U be Pe lczyński’s universal space for basic sequences and let

(un) be the basis of U . As in (2.11), consider the set

S =
{
L = {l0 < l1 < · · · } ∈ [N]∞ : (uln) is shrinking

}
.

By Theorem 2.20, the set S is Π1
1 and the map

S 3 L 7→ Sz(UL)

is a Π1
1-rank on S.

Now let A be an analytic subset of SD such that every Y ∈ A has a shrinking

Schauder basis. By Theorem 2.11, the Szlenk index is a Π1
1-rank on SD. Hence,

by part (ii) of Theorem A.2, there exists a countable ordinal ζ such that

sup{Sz(Y ) : Y ∈ A} = ζ.

Invoking part (i) of Theorem A.2, we see that the set

Sζ =
{
L ∈ S : Sz(UL) 6 ζ

}
is a Borel subset of S. By the choice of the ordinal ζ, the definition of the set

Sζ and our assumptions on the class A, the following are satisfied.
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(a) For every Y ∈ A there exists L ∈ Sζ such that Y ∼= UL.

(b) For every L = {l0 < l1 < · · · } ∈ Sζ the basic sequence (uln) is shrinking.

We define

Ã = {L ∈ Sζ : ∃Y ∈ A with UL ∼= Y }.

Using the fact that Sζ is a Borel subset of [N]∞ and arguing as in the proof of

Lemma 7.2, we see that Ã is an analytic subset of [N]∞. Let S be the pruned

tree on N× N such that Ã = proj[S] and let T = S \ {∅} be the pruned B-tree

on N × N corresponding to S. We define the family (xt)t∈T and the space X

as in the proof of Lemma 7.2. It is easily verified that the tree T , the space

X and the family (xt)t∈T satisfy all requirements of the lemma. The proof is

completed.

7.2 Reflexive spaces

Reflexive spaces with a Schauder basis

Theorem 7.4. [AD] Let A be an analytic subset of REFL and assume that

every Y ∈ A has a Schauder basis. Then there exists a reflexive Banach space Z

with a Schauder basis that contains every Y ∈ A as a complemented subspace.

Proof. We apply Lemma 7.2 to the analytic class A and we obtain a Schauder

tree basis X = (X,N× N, T, (xt)t∈T ) such that the following are satisfied.

(a) For every Y ∈ A there exists σ ∈ [T ] such that Y ∼= Xσ.

(b) For every σ ∈ [T ] there exists Y ∈ A such that Xσ
∼= Y . In particular, for

every σ ∈ [T ] the space Xσ is reflexive.

The desired space Z is the 2-amalgamation space AX
2 of the Schauder tree basis

X (see Definition 4.2). Indeed observe first that, by the discussion in Section

4.1, the space Z has a Schauder basis. Moreover, by Fact 4.3 and property (a)

above, the space Z contains every Y ∈ A as a complemented subspace. Finally,

the fact that Z is reflexive follows by Theorem 4.4 and property (b) above. The

proof is completed.

The class REFL

Theorem 7.5. [DF] Let A be an analytic subset of REFL. Then there exists

a reflexive Banach space Z with a Schauder basis that contains an isomorphic

copy of every X ∈ A.

In particular, the class REFL is strongly bounded.
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Proof. We fix an analytic subset A of REFL. We apply Corollary 5.25 and we

obtain an analytic subset A′ of REFL with the following properties.

(a) Every Y ∈ A′ has a Schauder basis.

(b) For every X ∈ A there exists Y ∈ A′ containing an isomorphic copy of X.

We apply Theorem 7.4 and we obtain a reflexive Banach space Z with a Schauder

basis that contains an isomorphic copy of every Y ∈ A′. By property (b) above,

we see that the space Z must also contain an isomorphic copy of every X ∈ A.

The proof is completed.

Consequences

For every X ∈ SB let TREFL(X) be the tree on N defined in Section 2.2. By

Theorem 2.5, the map

REFL 3 X 7→ o
(
TREFL(X)

)
is a Π1

1-rank on REFL. This fact and Theorem 7.5 lead to the following char-

acterization of those classes of separable Banach spaces admitting a separable

reflexive universal space.

Theorem 7.6. Let C ⊆ SB. Then the following are equivalent.

(i) There exists a separable reflexive Banach space Z that contains an isomor-

phic copy of every X ∈ C.

(ii) We have sup
{
o
(
TREFL(X)

)
: X ∈ C

}
< ω1.

(iii) There exists an analytic subset A of REFL such that C ⊆ A.

Proof. (i)⇒(ii) Let Z be a separable reflexive Banach space containing an

isomorphic copy of every X ∈ A. There exists a countable ordinal ξ such

that o
(
TREFL(Z)

)
= ξ. By Proposition 2.7 and our assumptions, we see that

o
(
TREFL(X)

)
6 o
(
TREFL(Z)

)
6 ξ for every X ∈ C. Therefore,

sup
{
o
(
TREFL(X)

)
: X ∈ C

}
6 ξ < ω1

as desired.

(ii)⇒(iii) Let ξ < ω1 be such that sup
{
o
(
TREFL(X)

)
: X ∈ C

}
= ξ and set

A =
{
Z ∈ REFL : o

(
TREFL(Z)

)
6 ξ
}
.

By part (i) of Theorem A.2, the class A is analytic while, by the choice of the

countable ordinal ξ, we obtain that C ⊆ A.
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(iii)⇒(i) Let A be an analytic subset of REFL such that C ⊆ A. We apply

Theorem 7.5 to the class A and we obtain a reflexive space Z with a Schauder

basis that contains an isomorphic copy of every X ∈ A. A fortiori, the space Z

contains an isomorphic copy of every X ∈ C. The proof is completed.

As in Section 2.2, let UC be the subset of REFL consisting of all separable

uniformly convex Banach spaces. It is Borel. Hence, applying Theorem 7.5 to

the class UC, we recover the following result due to Odell and Schlumprecht.

Corollary 7.7. [OS] There exists a separable reflexive space R that contains

an isomorphic copy of every separable uniformly convex Banach space.

7.3 Spaces with separable dual

Spaces with a shrinking Schauder basis

Theorem 7.8. [AD] Let A be an analytic subset of SD and assume that every

Y ∈ A has a shrinking Schauder basis. Then there exists a Banach space Z

with a shrinking Schauder basis that contains every Y ∈ A as a complemented

subspace.

Proof. Applying Lemma 7.3 to the analytic class A, we obtain a Schauder tree

basis X = (X,N× N, T, (xt)t∈T ) such that the following are satisfied.

(a) For every Y ∈ A there exists σ ∈ [T ] such that Y ∼= Xσ.

(b) For every σ ∈ [T ] the basic sequence (xσ|n)n>1 is shrinking.

The desired space Z is the `2 Baire sum of the Schauder tree basis X (see

Definition 3.2). Notice first that, by the discussion in Section 3.2 and property

(a) above, the space Z has a Schauder basis and contains every Y ∈ A as

a complemented subspace. The fact that Z has a shrinking Schauder basis

follows by property (b) and Corollary 3.29. The proof is completed.

The class SD

Theorem 7.9. [DF] Let A be an analytic subset of SD. Then there exists a

Banach space Z with a shrinking Schauder basis that contains an isomorphic

copy of every X ∈ A.

In particular, the class SD is strongly bounded.

Proof. Let A be an analytic subset of SD. By Corollary 5.24, there exists an

analytic subset A′ of SD with the following properties.

(a) Every Y ∈ A′ has a shrinking Schauder basis.
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(b) For every X ∈ A there exists Y ∈ A′ containing an isomorphic copy of X.

By Theorem 7.4 applied to the analytic class A′, we see that there exists a

Banach space Z with a shrinking Schauder basis that contains an isomorphic

copy of every Y ∈ A′. By (b) above, the space Z is as desired. The proof is

completed.

Consequences

For every X ∈ SB let Sz(X) be the Szlenk index of X. By Theorem 2.11, the

map

SD 3 X 7→ Sz(X)

is a Π1
1-rank on SD. Therefore, by Theorem 7.9 and using identical arguments

as in the proof of Theorem 7.6, we obtain the following characterization of those

classes of separable Banach spaces admitting a universal space with separable

dual.

Theorem 7.10. Let C ⊆ SB. Then the following are equivalent.

(i) There exists a Banach space Z with separable dual that contains an isomor-

phic copy of every X ∈ C.

(ii) We have sup
{

Sz(X) : X ∈ C
}
< ω1.

(iii) There exists an analytic subset A of SD such that C ⊆ A.

Fix a countable ordinal ξ and consider the set

Aξ = {X ∈ SB : Sz(X) 6 ξ}.

By Theorem 2.11 and part (i) of Theorem A.2, we see that Aξ is a Borel subset

of SD. Hence, by Theorem 7.9, we obtain the following corollary.

Corollary 7.11. [DF] There exists a family {Yξ : ξ < ω1} of Banach spaces

such that for every countable ordinal ξ the following are satisfied.

(i) The space Yξ has a shrinking Schauder basis.

(ii) If X is a separable Banach space with Sz(X) 6 ξ, then Yξ contains an

isomorphic copy of the space X.

7.4 Non-universal spaces

Non-universal spaces with a Schauder basis

Theorem 7.12. [AD] Let A be an analytic subset of NU and assume that every

Y ∈ A has a Schauder basis. Then there exists a non-universal Banach space Z

with a Schauder basis that contains every Y ∈ A as a complemented subspace.
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Let X,Y, Z be Banach spaces and let T : X → Y be a bounded linear oper-

ator. We say that the operator T fixes a copy of Z if there exists a subspace

E of X which is isomorphic to Z and is such that the operator T : E → Y

is an isomorphic embedding. For the proof of Theorem 7.12 we will need the

following classical result due to Rosenthal.

Theorem 7.13. [Ro1] Let X be a Banach space and let T : C(2N) → X be a

bounded linear operator. If T fixes a copy of `1, then T fixes a copy of C(2N).

We are ready to proceed to the proof of Theorem 7.12.

Proof of Theorem 7.12. We apply Lemma 7.2 to the analytic class A and we

obtain a Schauder tree basis X = (X,N×N, T, (xt)t∈T ) such that the following

are satisfied.

(a) For every Y ∈ A there exists σ ∈ [T ] such that Y ∼= Xσ.

(b) For every σ ∈ [T ] the space Xσ is non-universal.

The desired space Z is the `2 Baire sum of the Schauder tree basis X. Indeed,

the space Z has a Schauder basis and contains every Y ∈ A as a complemented

subspace. What remains is to check that the space Z is non-universal.

We will argue by contradiction. So assume, towards a contradiction, that

there exists a subspace E of Z which is isomorphic to C(2N). Let E′ be a

subspace of E which is isomorphic to `1. By Theorem 3.23, we see that the

subspace E′ of Z is not X-singular. In other words and according to Definition

3.4, there exist σ ∈ [T ] and a further subspace E′′ of E′ such that the operator

Pσ : E′′ → Xσ is an isomorphic embedding. Clearly, we may additionally assume

that E′′ is isomorphic to `1. Now consider the operator Pσ : E → Xσ. What

we have just proved is that the operator Pσ : E → Xσ fixes a copy of `1. By

Theorem 7.13, the operator Pσ : E → Xσ must also fix a copy of C(2N). Since

the spaces Xσ and Xσ are isometric, this implies that the space Xσ is universal.

This is a contradiction by property (b) above. Therefore, Z is non-universal.

The proof of Theorem 7.12 is completed.

The class NU

Theorem 7.14. [D3] Let A be an analytic subset of NU. Then there exists a

non-universal Banach space Z with a Schauder basis that contains an isomorphic

copy of every X ∈ A.

In particular, the class NU is strongly bounded.

Proof. Let A be an analytic subset of NU. We apply Corollary 6.27 and we

obtain an analytic subset A′ of NU with the following properties.

(a) Every Y ∈ A′ has a Schauder basis.
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(b) For every X ∈ A there exists Y ∈ A′ containing an isomorphic copy of X.

Next, we apply Theorem 7.12 to the analytic class A′ and we obtain a non-

universal Banach space Z with a Schauder basis that contains every Y ∈ A′.
By (b) above, the space Z is as desired. The proof is completed.

Consequences

In what follows let (en) denote a fixed normalized Schauder basis of C(2N). As in

Section 2.4, for every for every separable Banach space Y by TNC

(
Y,C(2N), (en)

)
we denote the tree defined in (2.10). By Theorem 2.17, the map

NU 3 Y 7→ o
(
TNC(Y,C(2N), (en))

)
is a Π1

1-rank on NU. Arguing as in the proof of Theorem 7.6, we obtain the fol-

lowing characterization of those classes of separable Banach spaces admitting a

separable universal Banach space which is not universal for all separable Banach

spaces.

Theorem 7.15. [D3] Let C ⊆ SB. Then the following are equivalent.

(i) There exists a non-universal separable Banach space Z that contains an

isomorphic copy of every X ∈ C.

(ii) We have sup
{
o
(
TNC(X,C(2N), (en))

)
: X ∈ C

}
< ω1.

(iii) There exists an analytic subset A of NU such that C ⊆ A.

The following consequence of Theorems 6.1 and 7.14 shows that the class of

L∞-spaces is “generic”.

Corollary 7.16. [D3] For every λ > 1 there exists a family {Y λξ : ξ < ω1} of

separable Banach spaces with the following properties.

(i) For every ξ < ω1 the space Y λξ is non-universal and L∞,λ+.

(ii) If ξ < ζ < ω1, then Y λξ is contained in Y λζ .

(iii) If X is a separable Banach space with o
(
TNC(X,C(2N), (en))

)
6 ξ, then

Yξ contains an isomorphic copy of X.

Proof. Fix λ > 1. The family {Y λξ : ξ < ω1} will be constructed by transfinite

recursion on countable ordinals. As the first step is identical to the general one

we may assume that for some countable ordinal ξ and every ζ < ξ the space Y λζ
has been constructed. We set

C =
{
X ∈ NU : o

(
TNC(Y,C(2N), (en))

)
6 ξ
}
∪ {Y λζ : ζ < ξ}.
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By Theorem 2.17 and part (i) of Theorem A.2, C is an analytic subset of NU.

We apply Theorem 7.14 and we obtain a separable non-universal space Z that

contains an isomorphic copy of every X ∈ C. Next, we apply Theorem 6.1 to the

space Z, and we define Y λξ to be the space Lλ[Z]. This completes the recursive

construction. Using Theorem 6.1 and Proposition 6.24, it is easily seen that the

family {Y λξ : ξ < ω1} is as desired. The proof is completed.

7.5 Spaces not containing a minimal space X

Spaces with a Schauder basis and not containing a minimal space X

Theorem 7.17. [AD] Let X be a minimal Banach space. Let A be an analytic

subset of NCX and assume that every Y ∈ A has a Schauder basis. Then

there exists a Banach space Z ∈ NCX with a Schauder basis that contains every

Y ∈ A as a complemented subspace.

Proof. The space X is minimal. Therefore, there exists 1 < q < +∞ such

that the space X does not contain an isomorphic copy of `q. We fix such a q.

Applying Lemma 7.2 to the analytic class A, we obtain a Schauder tree basis

X = (X,N× N, T, (xt)t∈T ) with the following properties.

(a) For every Y ∈ A there exists σ ∈ [T ] such that Y ∼= Xσ.

(b) For every σ ∈ [T ] we have Xσ ∈ NCX .

The desired space Z is the q-amalgamation space AX
q of the Schauder tree basis

X. Indeed, the space AX
q has a Schauder basis and contains every Y ∈ A as a

complemented subspace. We will verify that Z does not contain an isomorphic

copy of the minimal Banach space X.

As in the proof of Theorem 7.12, we will argue by contradiction. So assume

that there exists a subspace E of Z which is isomorphic to X. There exist

a block subspace E′ of Z and a subspace X ′ of X such that E′ ∼= X ′. By

the choice of q and the minimality of X, we see that E′ does not contain an

isomorphic copy of `q. Applying Corollary 4.7 and invoking property (iii) in

Lemma 7.2, we obtain k ∈ N and Y0, . . . , Yk ∈ A such that E′ is isomorphic

to a subspace of
∑k
n=0⊕Yn. By Lemma B.6, there exist n0 ∈ {0, . . . , k} and a

subspace E′′ of E′ such that E′′ is isomorphic to a subspace of Yn0 . Since X

is minimal, this implies that Yn0 must contain an isomorphic copy of X. This

contradicts our assumptions on the class A. Hence, Z does not contain X. The

proof is completed.

The class NCX with X minimal not containing `1

Theorem 7.18. [D3] Let X be a minimal Banach space not containing `1. Let

A be an analytic subset of NCX . Then there exists a Banach space Z ∈ NCX
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with a Schauder basis that contains an isomorphic copy of every Y ∈ A.

In particular, the class NCX is strongly bounded.

Proof. Fix an analytic subset A of NCX . We apply Corollary 6.29 and we obtain

an analytic subset A′ of NCX with the following properties.

(a) Every E ∈ A′ has a Schauder basis.

(b) For every Y ∈ A there exists E ∈ A′ containing an isomorphic copy of Y .

We apply Theorem 7.17 to the analytic class A′ and we obtain a Banach space

Z ∈ NCX with a Schauder basis which is universal for the class A′. Invoking

property (b) above, we see that the space Z is the desired one. The proof is

completed.

Consequences

Fix a minimal space X with a Schauder basis and not containing `1. Let (en)

be a normalized Schauder basis of X. For every separable Banach space Y by

TNC

(
Y,X, (en)

)
we denote the tree defined in (2.10). By Theorem 2.17, the

map

NCX 3 Y 7→ o
(
TNC(Y,X, (en))

)
is a Π1

1-rank on NCX . Using the same analysis as in Section 7.4, we obtain the

following analogues of Theorem 7.15 and Corollary 7.16 respectively.

Theorem 7.19. [D3] Let X be a minimal Banach space with a Schauder basis

and not containing `1 and let (en) be a normalized Schauder basis of X. Let

C ⊆ SB. Then the following are equivalent.

(i) There exists a Banach space Z ∈ NCX that contains an isomorphic copy of

every Y ∈ C.

(ii) We have sup
{
o
(
TNC(Y,X, (en))

)
: Y ∈ C

}
< ω1.

(iii) There exists an analytic subset A of NCX such that C ⊆ A.

Corollary 7.20. [D3] Let X be a minimal Banach space with a Schauder basis

and not containing `1 and let (en) be a normalized Schauder basis of X. Then

for every λ > 1 there exists a family {Y λξ : ξ < ω1} of separable Banach spaces

with the following properties.

(i) For every ξ < ω1 the space Y λξ is L∞,λ+ and does not contain an isomorphic

copy of X.

(ii) If ξ < ζ < ω1, then Y λξ is contained in Y λζ .

(iii) If Y is a separable Banach space with o
(
TNC(Y,X, (en))

)
6 ξ, then Yξ

contains an isomorphic copy of Y .
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7.6 Comments and Remarks

1. The results contained in this chapter are particular instances of a more

general phenomenon in descriptive set theory known as strong boundedness.

The phenomenon was first touched upon by Kechris and Woodin in [KW2], and

it was independently rediscovered in the context of Banach space theory in [AD].

Abstractly, one has a Π1
1 set B, a natural notion of embedding between elements

of B and a canonical Π1
1-rank φ on B which is coherent with the embedding,

in the sense that if x, y ∈ B and x embeds into y, then φ(x) 6 φ(y). The

strong boundedness of B is the fact that for every analytic subset A of B there

exists y ∈ B such that x embeds into y for every x ∈ A. Basic examples

of strongly bounded classes are the well-orderings WO and the well-founded

trees WF (however, in these cases, strong boundedness is easily seen to be

equivalent to boundedness). Beside the examples of strongly bounded classes

coming from Banach space theory, another example of a strongly bounded class

consisting of topological spaces was discovered in [D2].

Although our description of a strongly bounded class referred to a Π1
1 set,

we should point out that the phenomenon has been verified for more compli-

cated sets. For instance, the strongly bounded class discovered in [KW2] was

a Π1
2 set. This has also been encountered in Banach space theory. In partic-

ular, it was shown in [DL] that the class US consisting of all unconditionally

saturated separable Banach spaces is strongly bounded (recall that an infinite-

dimensional Banach space X is said to be unconditionally saturated if every

infinite-dimensional subspace Y of X contains an unconditional basic sequence).

The class US is Π1
2.

2. The first step towards the structural results presented in these notes was

made in [AD]. The machinery developed in [AD] was able to treat the case of

analytic classes of Banach spaces with a Schauder basis. In particular, Theorems

7.4, 7.8, 7.12 and 7.17 are taken from [AD]. In these important special cases one

can actually construct a complementably universal space. By a classical result

due to Johnson and Szankowski [JS], one cannot expect such a strong property

for the general case.

3. As we have already noted, Corollary 7.7 is due to Odell and Schlumprecht

[OS]. The problem of the existence of a separable reflexive Banach space which

is universal for the separable uniformly convex spaces had been asked by Bour-

gain [Bou1].

4. Corollary 7.11 is taken from [DF] and answers a problem posed by Rosenthal

(see [Ro3]).

5. Theorems 7.15 and 7.19 are taken from [D3]. Although the corresponding

results, Theorems 7.6 and 7.10 respectively, were not explicitly isolated in [DF]

they are implicitly contained in that work.
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6. Theorem 7.14 is taken from [D3]. The problem whether the class NU is

strongly bounded had been asked by Kechris in the 1980s.
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Appendix A

Rank theory

Definitions and basic properties

Definable ranks are fundamental tools in descriptive set theory. In our presen-

tation we will concentrate only on the first level of the projective hierarchy.

Definition A.1. Let X be a Polish space and let B be a Π1
1 subset of X. A map

φ : B → ω1 is said to be a Π1
1-rank on B if there are relations 6Σ,6Π⊆ X ×X

in Σ1
1 and Π1

1 respectively, such that for every y ∈ B we have

φ(x) 6 φ(y) ⇔ (x ∈ B) and φ(x) 6 φ(y)

⇔ x 6Σ y ⇔ x 6Π y.

The basic properties of Π1
1-ranks are summarized below.

Theorem A.2. Let X be a Polish space, let B be a Π1
1 subset of X and let

φ : B → ω1 be a Π1
1-rank on B. Then the following hold.

(i) For every countable ordinal ξ the set Bξ = {x ∈ B : φ(x) 6 ξ} is Borel.

(ii) For every analytic subset A of B we have sup{φ(x) : x ∈ A} < ω1.

(iii) B is Borel if and only if sup{φ(x) : x ∈ B} < ω1.

Property (i) in Theorem A.2 follows from the fact that ∆1
1 = B(X). For

every ξ < ω1 the set Bξ is called the ξ-resolvent of B. Property (ii) is known as

boundedness. It is a consequence of a more general result concerning the length

of definable well-founded relations due to Kunen and Martin (see [Ke, Theorems

35.23 and 31.1]). Part (iii) follows easily by part (ii). The following fact will be

useful in the discussion below.

127
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Fact A.3. Let X be a Polish space, let B be a Π1
1 subset of X and let φ : B → ω1.

Then φ is a Π1
1-rank on B if and only if there are relations 6′Σ, <

′
Σ⊆ X × X

both in Σ1
1 such that for every y ∈ B we have

(x ∈ B) and φ(x) 6 φ(y)⇔ x 6′Σ y

and

(x ∈ B) and φ(x) < φ(y)⇔ x <′Σ y.

Proof. First, assume that φ is a Π1
1-rank on B and let 6Σ,6Π be the associated

relations described in Definition A.1. Define <′Σ by

x <′Σ y ⇔ (x 6Σ y) and ¬(y 6Π x)

and set 6′Σ=6Σ. It is easy to see that 6′Σ and <′Σ are as desired.

Conversely, set 6Σ=6′Σ and define

x 6Π y ⇔ (x ∈ B) and ¬(y <′Σ x).

Again it is easily verified that the relations 6Σ and 6Π witness that φ is a

Π1
1-rank on B. The proof is completed.

Well-founded trees

The following theorem provides the archetypical example of a Π1
1-rank.

Theorem A.4. Let Λ be a countable set. Then the set WF(Λ) is Π1
1 and the

map T 7→ o(T ) is a Π1
1-rank on WF(Λ).

Proof. To see that WF(Λ) is Π1
1 notice that

T ∈WF(Λ)⇔ ∀σ ∈ ΛN ∃k ∈ N with σ|k /∈ T.

We proceed to show that T 7→ o(T ) is a Π1
1-rank on WF(Λ). We will use Fact

A.3. Specifically, consider the relations 6Σ and <Σ in Tr(Λ)×Tr(Λ) defined by

S 6Σ T ⇔ T /∈WF(Λ) or [S, T ∈WF(Λ) and o(S) 6 o(T )]

and

S <Σ T ⇔ T /∈WF(Λ) or [S, T ∈WF(Λ) and o(S) < o(T )].

By Proposition 1.5, we have

S 6Σ T ⇔ ∃f : S → T monotone,

and so, the relation 6Σ is Σ1
1. For every T ∈ Tr(Λ) and every λ ∈ Λ we set

Tλ = {t : λat ∈ T}. Observe that if T ∈ WF(Λ), then o(T ) = sup{o(Tλ) : λ ∈
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Λ}+ 1, while if T ∈ IF(Λ), then there exists λ ∈ Λ such that Tλ ∈ IF(Λ). Using

these remarks and invoking again Proposition 1.5, we see that

S <Σ T ⇔ ∃λ ∈ Λ and ∃f : S → Tλ monotone.

The proof is completed.

Let A be an analytic subset of WF. By part (ii) of Theorem A.2 and Theorem

A.4, there exists a well-founded tree S on N such that o(T ) 6 o(S) for every

T ∈ A. The following parameterized version of this fact is useful in applications.

Theorem A.5. Let X be a standard Borel space and let A ⊆ X×Tr be analytic.

Then there exists a Borel map f : X → Tr such that for every x ∈ X, if the

section Ax = {T : (x, T ) ∈ A} of A at x is a subset of WF, then f(x) ∈ WF

and o
(
f(x)

)
> sup{o(T ) : T ∈ Ax}, while if Ax ∩ IF 6= ∅, then f(x) ∈ IF.

Proof. All uncountable standard Borel spaces are Borel isomorphic (see [Ke,

Theorem 15.6]). Hence, we may assume that X = NN. In this case we will show

that the map f can be chosen to be continuous. So let A ⊆ NN×Tr be analytic.

There exists F ⊆ NN ×Tr×NN closed with A = projNN×TrF . For every x ∈ NN

we define Tx ∈ Tr(N× N) by

Tx =
{

(t, s) : |t| = |s| = n and ∃(y, T, z) ∈ F with

x|n = y|n, t ∈ T and s = z|n
}
.

The map h : NN → Tr(N× N) defined by h(x) = Tx is easily seen to be contin-

uous.

Claim A.6. For every x ∈ NN we have Tx ∈WF(N×N) if and only if Ax ⊆WF.

Proof of Claim A.6. Fix x ∈ NN. First assume that Tx is well-founded. For

every T ∈ Ax we select z ∈ NN such that (x, T, z) ∈ F . Define φ : T → Tx by

φ(t) = (t, z|n) where n = |t|. Then φ is a well-defined monotone map. Since

Tx ∈WF(N× N), by Proposition 1.5, we see that T ∈WF and o(T ) 6 o(Tx).

Conversely, assume that Tx ∈ IF(N×N). Let
(
(tn, sn)

)
be an infinite branch

of Tx. For every n ∈ N there exist yn ∈ NN, Tn ∈ Tr and zn ∈ NN such that

(yn, Tn, zn) ∈ F , yn|n = x|n, tn ∈ Tn and zn|n = sn. It follows that yn → x

and zn → z where z =
⋃
n sn ∈ NN. Moreover, by passing to subsequences if

necessary, we may assume that there exists T ∈ Tr such that Tn → T (the space

of trees is compact). The set F is closed. Hence (x, T, z) ∈ F and so T ∈ Ax.

As every T ∈ Tr is downwards closed, we see that tn ∈ Tk for every k > n. This

implies that tn ∈ T for every n ∈ N; that is, the tree T is ill-founded. The claim

is proved.

Notice that, by the proof of the above claim, we have that if Ax ⊆WF, then

sup{o(T ) : T ∈ Ax} 6 o(Tx). Now let g : Tr(N × N) → Tr be any continuous

map satisfying the following properties.
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(a) We have T ∈WF(N× N) if and only if g(T ) ∈WF.

(b) For every T ∈ Tr(N× N) we have o(T ) 6 o
(
g(T )

)
.

We define f : NN → Tr by f(x) = g(Tx). Clearly f is as desired. The proof of

Theorem A.5 is completed.

Reductions

We recall the following notion.

Definition A.7. Let X and Y be Polish spaces, and let A ⊆ X and B ⊆ Y .

We say that A is Wadge (respectively, Borel) reducible to B if there exists a

continuous (respectively, Borel) map f : X → Y such that f−1(B) = A.

The link between the concept of Borel reducibility and Π1
1-ranks is given in

the following fact. Its proof is straightforward.

Fact A.8. Let X and Y be Polish spaces, and let A ⊆ X and B ⊆ Y . Assume

that A is Borel reducible to B via a Borel map f : X → Y . Assume, moreover,

that B is Π1
1 and that φ : B → ω1 is a Π1

1-rank on B. Then A is Π1
1 and the

map ψ : A→ ω1 defined by ψ(x) = φ
(
f(x)

)
is a Π1

1-rank on A.

Theorem A.4 combined with Fact A.8 gives us a powerful method for con-

structing Π1
1-ranks on Π1

1 sets. Simply find a reduction of the set in question to

WF and then assign to every point the order of the well-founded tree to which

the point is reduced. We will illustrate this method by showing the following

fundamental result.

Theorem A.9. Let X be a Polish space and let B ⊆ X be a Π1
1 set. Then

there exists a Π1
1-rank on B.

Proof. We have already indicated that, by Theorem A.4 and Fact A.8, it is

enough to find a Borel reduction of B to WF. Invoking the fact that all un-

countable Polish spaces are Borel isomorphic, we may assume that X is the

Baire space NN. In this case we will show that B is Wadge reducible to WF.

In particular, by Theorem 1.6 and the fact that B is Π1
1, there exists a pruned

tree T on N× N such that Bc = p[T ]. For every σ ∈ NN we set

T (σ) = {t ∈ N<N : |t| = k and (σ|k, t) ∈ T} ∈ Tr.

The tree T (σ) is usually called the section tree of T at σ. It is easy to see that

the map f : NN → Tr defined by f(σ) = T (σ) is continuous. Observe that

σ /∈ B ⇔ ∃τ ∈ NN with (σ, τ) ∈ [T ]⇔ T (σ) ∈ IF

and so f−1(WF) = B. The proof is completed.



131

Derivatives

The most frequently met construction of an ordinal ranking in analysis involves

some kind of derivation procedure. The main result in this subsection asserts

that if the derivative is sufficiently definable (in particular, if it is Borel), then

the associated rank is actually a Π1
1-rank. A typical example is the Cantor–

Bendixson derivative of a compact subset K of a Polish space X and the cor-

responding Cantor–Bendixson rank on the set of all countable compact subsets

of X.

Specifically, let X be a Polish space. A map D : K(X) → K(X) is said to

be a derivative on K(X) if D(K) ⊆ K for all K ∈ K(X), and D(K1) ⊆ D(K2)

if K1 ⊆ K2. For every K ∈ K(X) by transfinite recursion we define the iterated

derivatives
(
Dξ(K) : ξ < ω1

)
of K by

D0(K) = K, Dξ+1(K) = D
(
Dξ(K)

)
and Dλ(K) =

⋂
ξ<λ

Dξ(K) if λ is limit.

Clearly
(
Dξ(K) : ξ < ω1

)
is a transfinite decreasing sequence of compact subsets

of X, and so, it is eventually constant. The D-rank of K, denoted by |K|D,

is defined to be the least ordinal ξ such that Dξ(K) = Dξ+1(K). Also we set

D∞(K) = D|K|D (K).

In applications we often need to deal with parameterized derivatives. In

particular, let X and Y be Polish spaces. A map D : Y ×K(X)→ K(X) is said

to be a parameterized derivative if for every y ∈ Y the map Dy : K(X)→ K(X)

defined by Dy(K) = D(y,K), is a derivative on K(X). We have the following

theorem.

Theorem A.10. [KW1] Let X,Y be Polish spaces, and let D : Y ×K(X)→
K(X) be a parameterized Borel derivative. Then the set

ΩD =
{

(y,K) ∈ Y ×K(X) : D∞y (K) = ∅
}

is Π1
1 and the map (y,K) 7→ |K|Dy is a Π1

1-rank on ΩD.

Theorem A.10 will be frequently used in the following form.

Theorem A.11. Let X be a Polish space and let Dn : K(X)→ K(X) (n ∈ N)

be a sequence of Borel derivatives on K(X). Then the set

Ω = {K ∈ K(X) : D∞n (K) = ∅ ∀n ∈ N}

is Π1
1 and the map K 7→ sup{|K|Dn : n ∈ N} is a Π1

1-rank on Ω.

Proof. Let n ∈ N be arbitrary. Applying Theorem A.10 for Y = {n} and

D = Dn, we see that the set ΩDn = {K ∈ K(X) : D∞n (K) = ∅} in Π1
1. Since

Ω =
⋂
n ΩDn , we conclude that Ω is Π1

1.
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For notational convenience we set φ(K) = sup{|K|Dn : n ∈ N} for every

K ∈ Ω. Let Y = N be equipped with the discrete topology and consider

the map D : Y × K(X) → K(X) defined by D(n,K) = Dn(K). Then D is a

parameterized Borel derivative. Invoking Theorem A.10 again, we see that the

map (n,K) 7→ |K|Dn = |K|Dn is a Π1
1-rank on ΩD. Let 6Σ and 6Π be the

associated relations. Observe that for every K ∈ Ω we have

(H ∈ Ω) and φ(H) 6 φ(K) ⇔ ∀n ∈ N ∃m ∈ N with (n,H) 6Σ (m,K)

⇔ ∀n ∈ N ∃m ∈ N with (n,H) 6Π (m,K).

Hence φ is a Π1
1-rank on Ω. The proof is completed.

For the proof of Theorem A.10 we need some preliminary results. We start

with the following lemma.

Lemma A.12. Let X be a Polish space. Then the map
⋂

: K(X)N → K(X)

defined by
⋂(

(Kn)
)

=
⋂
nKn, is Borel.

Proof. By Proposition 1.4, it is enough to show that the set AU =
{

(Kn) ∈
K(X)N : U ∩

(⋂
nKn

)
6= ∅} is Borel for every open subset U of X. So, let U

be one. Write U as
⋃
m Fm where each Fm is closed. Notice that

(Kn) ∈ AU ⇔ ∃m ∈ N ∀n ∈ N we have Fm ∩K0 ∩ · · · ∩Kn 6= ∅.

Therefore, AU is Borel. The proof is completed.

Let α ∈ 2N×N, that is, α is the characteristic function of a binary relation

on N. The field F (α) of α is the set {n ∈ N : α(n, n) = 1}. For every α ∈ 2N×N

we define 6α⊆ N× N by

n 6α m⇔ n,m ∈ F (α) and α(n,m) = 1.

Let LO∗ be the subset of 2N×N consisting of all α ∈ 2N×N with 0 ∈ F (α) and

such that 6α is a linear ordering on F (α) with 0 as the least element. Notice

that the set LO∗ is closed in 2N×N as

α ∈ LO∗ ⇔ 0 ∈ F (α) and (∀n ∈ F (α) 0 6α n) and

∀n,m ∈ F (α) [n 6α m or m 6α n] and

∀n,m ∈ F (α) [n 6α m and m 6α n⇒ n = m] and

∀n,m, k ∈ F (α) [n 6α m and m 6α k ⇒ n 6α k].

Also let WO∗ be the subset of LO∗ consisting of all α ∈ LO∗ for which 6α
is a well-ordering on F (α). For every α ∈ WO∗ by |α| we denote the unique
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countable ordinal which is isomorphic to (F (α), <α), where <α is the strict part

of 6α on F (α), that is,

n <α m⇔ n 6= m and n 6α m.

Notice that {|α| : α ∈ WO∗} = ω1 \ {0}. It can be shown (but it is of no use

in the argument below) that the set WO∗ is Π1
1 and that the map α 7→ |α| is a

Π1
1-rank on WO∗ (see [Ke, Theorem 34.4]).

We fix a Borel map h : LO∗ → LO∗ such that

(a) α ∈WO∗ if and only if h(α) ∈WO∗, and

(b) for every α ∈WO∗ we have |h(α)| = |α|+ 1.

We are ready to proceed to the proof of Theorem A.10.

Proof of Theorem A.10. First we notice that the set ΩD is Π1
1 as

(y,K) /∈ ΩD ⇔ ∃H ∈ K(X) [D(y,H) = H and H ⊆ K and H 6= ∅].

It remains to show that the map (y,K) 7→ |K|Dy is a Π1
1-rank on ΩD. To this

end it is enough to find Σ1
1 relations R and S in LO∗×Y ×K(X) such that the

following properties are satisfied.

(P1) If (y,K) ∈ ΩD with K 6= ∅, then for every α ∈ LO∗ we have

(α, y,K) ∈ R⇔ α ∈WO∗ and |α| 6 |K|Dy . (A.1)

(P2) If α ∈WO∗, then for every (y,K) ∈ Y ×K(X) we have

(α, y,K) ∈ S ⇔ (y,K) ∈ ΩD and |K|Dy = |α|. (A.2)

Indeed, assuming that the relations R and S have been defined, we complete

the proof as follows. We define 6Σ and <Σ by

(z,H) 6Σ (y,K) ⇔ (K = ∅ ⇒ H = ∅) and
[
(H = ∅) or

(∃α ∈ LO∗ with [(α, y,K) ∈ R and (α, z,H) ∈ S])
]

and

(z,H) <Σ (y,K) ⇔ (K 6= ∅) and
[
(H = ∅) or

(∃α ∈ LO∗ with [(h(α), y,K) ∈ R and (α, z,H) ∈ S])
]

Then 6Σ and <Σ are both Σ1
1 since the relations R and S are Σ1

1 and the map

h is Borel. Moreover, invoking properties (P1) and (P2) above, we see that for

every (y,K) ∈ ΩD we have

(z,H) ∈ ΩD and |H|Dz 6 |K|Dy ⇔ (z,H) 6Σ (y,K)
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and

(z,H) ∈ ΩD and |H|Dz < |K|Dy ⇔ (z,H) <Σ (y,K).

By Fact A.3 we conclude that the map (y,K) 7→ |K|Dy is a Π1
1-rank on ΩD.

We proceed to define the relations R and S. For the first one we set

(α, y,K) ∈ R ⇔ ∃p ∈ K(X)N with
(
p(0) = K and

[
∀m ∈ F (α)(

p(m) 6= ∅ and [m 6= 0⇒ p(m) ⊆
⋂

n<αm

D(y, p(n))]
)])

.

By Lemma A.12 and our assumptions on the map D, we see that R is Σ1
1.

We will check that it satisfies property (P1). So let (y,K) ∈ ΩD with K 6= ∅
and let α ∈ LO∗. For notational convenience we set ζ = |K|Dy . First notice

that if α ∈ WO∗ with |α| 6 ζ, then clearly (α, y,K) ∈ R. Conversely, assume

that (α, y,K) ∈ R. Let p ∈ K(X)N witnessing this fact. We observe that for

every m ∈ F (α) with m 6= 0 there exists ξ < ζ such that
⋂
n<αm

D(y, p(n)) *
Dξ+1
y (K). For if not, there would existed m ∈ F (α) with m 6= 0 such that for

every ξ < ζ

∅ 6= p(m) ⊆
⋂

n<αm

D(y, p(n)) ⊆ Dξ+1
y (K).

This implies that

D∞y (K) =
⋂
ξ<ζ

Dξ+1
y (K) ⊇ p(m) 6= ∅

contradicting the fact that (y,K) ∈ ΩD. We define f : F (α) → {ξ : ξ < ζ} as

follows. We set f(0) = 0. If m ∈ F (α) with m 6= 0, then let

f(m) = least ξ < ζ such that
⋂

n<αm

D(y, p(n)) * Dξ+1
y (K).

Claim A.13. For every m, k ∈ F (α) with m <α k we have f(m) < f(k).

Proof of Claim A.13. First we notice that for every k ∈ F (α) with k 6= 0 we

have ⋂
n<αk

D(y, p(n)) ⊆ D(y, p(0)) = D1
y(K).

Hence f(k) > 0 = f(0). Thus, in what follows we may assume that m ∈ F (α)

and m 6= 0. By the definitions of the relation R and the map f , we have

p(m) ⊆
⋂

n<αm

D(y, p(n)) ⊆
⋂

ξ<f(m)

Dξ+1
y (K) = Df(m)

y (K).

Hence D(y, p(m)) = Dy(p(m)) ⊆ Df(m)+1
y (K) since Dy is a derivative on K(X).

It follows that for every k ∈ F (α) with m <α k we have
⋂
n<αk

D(y, p(n)) ⊆
D(y, p(m)) ⊆ Df(m)+1

y (K). By the definition of the map f , we conclude that

f(k) > f(m) + 1 > f(m). The claim is proved.
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By the above claim, the map f is order preserving from (F (α), <α) to ζ.

Therefore, α ∈ WO∗ and |α| 6 ζ = |K|Dy . This completes the proof that the

relation R satisfies property (P1).

It remains to define the relation S. We set

(α, y,K) ∈ S ⇔ ∃p ∈ K(X)N with
(
p(0) = K and

[
∀m ∈ F (α)(

p(m) 6= ∅ and [m 6= 0⇒ p(m) =
⋂

n<αm

D(y, p(n))]
)]

and
⋂

m∈F (α)

D(y, p(m)) = ∅
)
.

Invoking Lemma A.12 and the Borelness of the map D, we see that S is Σ1
1.

Moreover, it is easily verified that S satisfies property (P2). The proof of The-

orem A.10 is completed.

We close this appendix by mentioning the following result which concerns

sets in product spaces with compact sections. Although it is not related to the

notion of a Π1
1-rank, it is a very useful tool for checking that various derivatives

are Borel. Its proof can be found in [Ke, Theorem 28.8].

Theorem A.14. Let X and Y be Polish spaces and let A ⊆ Y ×X such that

for every y ∈ Y the section Ay = {x ∈ X : (y, x) ∈ A} of A at y is compact.

Consider the map ΦA : Y → K(X) defined by ΦA(y) = Ay. Then the set A is

Borel if and only if ΦA is a Borel map.
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Appendix B

Banach space theory

B.1 Schauder bases

Definition B.1. A sequence (xn) in a Banach space X is said to be a Schauder

basis of X if for every x ∈ X there exists a unique sequence (an) of scalars such

that x =
∑
n∈N anxn. A sequence (xn) which is a Schauder basis of its closed

linear span is called a basic sequence.

Let (xn) be a Schauder basis of a Banach space X. By (x∗n) we shall denote

the sequence of bi-orthogonal functionals associated to (xn). For every subset

F of N by PF we shall denote the natural projection onto span{xn : n ∈ F}.
The basis constant of (xn) is defined to be the number sup{‖P{0,...,n}‖ : n ∈ N}.
If x =

∑
n∈N anxn is a vector in X, then the support of x, supp(x), is defined

to be the set {n ∈ N : an 6= 0}.

Definition B.2. Let (xn) be a Schauder basis of a Banach space X and C > 1.

(1) The basis (xn) is said to be monotone if its basis constant is 1. It is said

to be bi-monotone if ‖PI‖ = 1 for every interval I of N.

(2) The basis (xn) is said to be C-unconditional if ‖PF ‖ 6 C for every subset F

of N. The basis (xn) is said to be unconditional if it is K-unconditional

for some K > 1.

(3) The basis (xn) is said to be shrinking if the sequence (x∗n) of bi-orthogonal

functionals associated to (xn) is a Schauder basis of X∗.

(4) The basis (xn) is said to be boundedly complete if for every sequence (an)

of scalars such that sup
{
‖
∑k
n=0 anxn‖ : k ∈ N

}
< +∞ we have that the

series
∑
n∈N anxn converges.

137
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(5) A sequence (vk) in X is said to be block if max{n : n ∈ supp(vk)} <
min{n : n ∈ supp(vk+1)} for every k ∈ N.

Two sequences (xn) and (yn), in two Banach spacesX and Y respectively, are

said to be C-equivalent, where C > 1, if for every k ∈ N and every a0, . . . , ak ∈ R
we have

1

C
·
∥∥ k∑
n=0

anyn
∥∥
Y
6
∥∥ k∑
n=0

anxn
∥∥
X

6 C ·
∥∥ k∑
n=0

anyn
∥∥
Y
.

The following stability result is classical and asserts that basic sequences are

invariant under small perturbations.

Proposition B.3. Let X be a Banach space and let (xn) be a normalized basic

sequence in X with basis constant K > 1. If (yn)ln=0 is a finite sequence in X

such that

‖xn − yn‖ 6
1

2K
· 1

2n+2

for every n ∈ {0, . . . , l}, then (yn)ln=0 is 2-equivalent to (xn)ln=0.

B.2 Operators on Banach spaces

Let X,Y be Banach spaces, and let L(X,Y ) be the Banach space of all bounded

linear operators from X to Y . For every T ∈ L(X,Y ) by T ∗ ∈ L(Y ∗, X∗) we

shall denote the dual operator of T defined by

T ∗(y∗)(x) = y∗
(
T (x)

)
for every x ∈ X.

We recall the following classes of operators.

Definition B.4. Let X and Y be Banach spaces and let T ∈ L(X,Y ).

(1) T is said to be a finite rank operator if dim
(
T (X)

)
<∞.

(2) T is said to be a compact operator if T (BX) is a relatively compact subset

of Y .

(3) T is said to be a weakly compact operator if T (BX) is a relatively weakly

compact subset of Y .

(4) T is said to be a strictly singular operator if for every infinite-dimensional

subspace Z of X the operator T : Z → Y is not an isomorphic embedding.

Clearly every finite rank operator is compact and every compact operator is

weakly compact. Strictly singular operators possess some of the strong stability

properties of compact operators (they form, for instance, an operator ideal)
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though they are not well-behaved under duality, as the dual operator of a strictly

singular one is not necessarily strictly singular. The following result, due to

Kato, shows that strictly singular operators are very “near” to the compact

ones (see [LT, Proposition 2.c.4]).

Proposition B.5. Let X and Y be Banach spaces. Let T ∈ L(X,Y ) be an

operator such that the restriction of T to any finite co-dimensional subspace Z

of X is not an isomorphic embedding. Then for every ε > 0 there exists an

infinite dimensional subspace Z of X such that T |Z is compact and ‖T |Z‖ < ε.

Moreover, if X has a Schauder basis (xn), then Z can be chosen to be a block

subspace.

The following useful fact is related to Proposition B.5, and it is essentially

a Ramsey-type statement.

Lemma B.6. Let X be a Banach space and let Y be a closed subspace of X.

Then for every subspace Z of X there exists a further subspace Z ′ of Z such

that Z ′ is isomorphic either to a subspace of Y or to a subspace of X/Y .

In particular, if Y,X0, . . . , Xk are Banach spaces and T : Y →
∑k
n=0⊕Xn

is a continuous linear operator which is not strictly singular, then there exist a

subspace Y ′ of Y and i ∈ {0, . . . , k} such that the operator Pi ◦ T : Y ′ → Xi is

an isomorphic embedding, where Pi :
∑k
n=0⊕Xn → Xi stands for the natural

projection.

B.3 Interpolation method

Definitions and basic properties

Let (X, ‖ · ‖) be a Banach space and let W be a closed, convex, bounded and

symmetric subset of X. For every n ∈ N with n > 1 let ‖ · ‖n be the Minkowski

gauge of the set 2nW + 2−nBX ; that is,

‖x‖n = inf
{
λ > 0 :

x

λ
∈ 2nW + 2−nBX

}
.

Clearly ‖ · ‖n is an equivalent norm on X. Let 1 < p < +∞. For every x ∈ X
we define

|x|p =
( ∞∑
n=1

‖x‖pn
)1/p

. (B.1)

We notice that the map | · |p is not necessarily a norm on X (and, in fact, it is

not for most interesting cases). It is, however, a norm on the vector subspace of

X consisting of all x ∈ X for which |x|p < +∞. This is essentially the content

of the following definition due to Davis, Fiegel, Johnson and Pe lczyński.
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Definition B.7. [DFJP] Let X, W and 1 < p < +∞ be as above. The

p-interpolation space of the pair (X,W ), denoted by ∆p(X,W ), is defined to be

the vector space

{x ∈ X : |x|p < +∞}

equipped with the | · |p norm.

By J : (∆p(X,W ), | · |p) → (X, ‖ · ‖) we denote the inclusion map. Respec-

tively, for every n ∈ N by Jn : (∆p(X,W ), | · |p) → (X, ‖ · ‖n) we denote the

inclusion map.

For every pair (X,W ) as above and every 1 < p < +∞ consider the space

Z =
( ∞∑
n=1

⊕(X, ‖ · ‖n)
)
`p
.

The space (∆p(X,W ), | · |p) is naturally identified with the “diagonal” subspace

∆ = {(x, x, . . . ) ∈ Z : x ∈ X} of Z via the isometry

(∆p(X,W ), | · |p) 3 x 7→ (x, x, . . . ) ∈ ∆.

It follows that the p-interpolation space of the pair (X,W ) is a Banach space.

This fact is isolated in the following proposition, in which we also gather some

basic properties of the interpolation space.

Proposition B.8. Let (X, ‖ · ‖) be a Banach space, let W be a closed, convex,

bounded and symmetric subset of X, and let 1 < p < +∞. We set Y =

(∆p(X,W ), | · |p). Then the following hold.

(i) W ⊆ BY .

(ii) The space Y is a Banach space and J is continuous.

(iii) The operator J∗∗ : Y ∗∗ → X∗∗ is one-to-one and (J∗∗)−1(X) = Y .

(iv) The space Y is reflexive if and only if W is weakly compact.

(v) Let τX and τY be the relative topologies on BY of (X,w) and (Y,w) respec-

tively. Then τX = τY .

(vi) The operator J∗ : X∗ → Y ∗ has norm dense range.

Parts (i)–(v) in the above proposition are essentially the content of [DFJP,

Lemma 1]. Part (vi) is also well-known. It is a consequence of the fact that the

operator J∗∗ is one-to-one.
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Spaces with a Schauder basis

In what follows let X denote a Banach space with a Schauder basis (xn). For

every n ∈ N let Pn be the natural projection onto span{xk : k 6 n}. Also

let W be a closed, convex, bounded and symmetric subset of X. The following

proposition provides sufficient conditions on W so that the p-interpolation space

∆p(X,W ) will have a basis.

Proposition B.9. [DFJP] Let X and W be as above and 1 < p < +∞.

Assume that Pn(W ) ⊆ W and λnxn ∈ span{W} for some λn ∈ R and every

n ∈ N. We set zn = J−1(xn) for every n ∈ N. Then the sequence (zn) is a

monotone Schauder basis (not normalized) of ∆p(X,W ). Moreover, if (xn) is

shrinking, then so is (zn).

Now assume that X is a Banach space with a shrinking Schauder basis (xn).

Let W be a closed, convex, bounded and symmetric subset of X. If W is weakly

compact, then, by part (iv) of Proposition B.8, for every 1 < p < +∞ the space

∆p(X,W ) is reflexive. However, the space ∆p(X,W ) does not necessarily have

a basis unless W satisfies Pn(W ) ⊆ W for every n ∈ N. The following lemma

shows that we can assume that W has this property without harming the basic

topological assumption on W .

Lemma B.10. [DFJP] Let X be a Banach space with a shrinking Schauder

basis (xn) and let W be a weakly compact subset of X. Then the set

W ′ = W ∪
⋃
n∈N

Pn(W )

is also weakly compact.

B.4 Local theory of infinite-dimensional Banach

spaces

Let X and Y be two isomorphic Banach spaces (not necessarily infinite dimen-

sional). The Banach–Mazur distance between X and Y is defined by

d(X,Y ) = inf
{
‖T‖ · ‖T−1‖ : T : X → Y is an isomorphism

}
. (B.2)

Now let λ > 1. An infinite-dimensional Banach space X is said to be a

L∞,λ-space if for every finite-dimensional subspace F of X there exists a finite-

dimensional subspace G of X with F ⊆ G and such that d(G, `n∞) 6 λ, where

n = dim(G). The space X is said to be a L∞,λ+-space if X is a L∞,θ-space for

any θ > λ. Finally, the space X is said to be a L∞-space if X is a L∞,λ-space

for some λ > 1. The class of L∞-spaces was introduced by Lindenstrauss and

Pe lczyński [LP1].
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It follows readily by the above definition that if X is a separable

L∞,λ-space, then there exists an increasing (with respect to inclusion) sequence

(Gn) of finite-dimensional subspaces of X with
⋃
nGn dense in X and such that

d(Gn, `
mn
∞ ) 6 λ, where mn = dim(Gn) for every n ∈ N. It is relatively easy to

see that this property actually characterizes separable L∞-spaces. Precisely, we

have the following fact.

Fact B.11. Let X be a separable Banach space and λ > 1. Assume that there

exists an increasing sequence (Fn) of finite-dimensional subspaces of X with⋃
n Fn dense in X and such that d(Fn, `

mn
∞ ) 6 λ, where mn = dim(Fn). Then

X is a L∞,λ+-space.

Recall that if F is a finite-dimensional subspace of a Banach space X such

that d(F, `n∞) 6 λ, where n = dim(F ), then there exists a projection P : X → F

with ‖P‖ 6 λ2. Therefore, every separable L∞-space has a finite dimensional

decomposition. In fact, the following stronger structural property is valid due

to Johnson, Rosenthal and Zippin.

Theorem B.12. [JRZ] Every separable L∞-space has a Schauder basis.

The book of Bourgain [Bou3] contains a presentation of the theory of

L∞-spaces and a discussion of many remarkable examples. Further structural

properties of L∞-spaces, and in particular refinements of Theorem B.12, can be

found in [Ro4].

B.5 Theorem 6.13: the Radon–Nikodym prop-

erty

Our aim in this section is to complete the proof of Theorem 6.13. In particular,

we will show the following.

Let 0 < η < 1. Let (Fn, jn) be a system of isometric embeddings where the

sequence (Fn) consists of finite-dimensional Banach spaces and for every n ∈ N
the isometric embedding jn : Fn → Fn+1 is η-admissible. Then the inductive

limit of the system (Fn, jn) has the Radon–Nikodym property.

The Radon–Nikodym property can be defined in many equivalent ways, either

geometric or probabilistic. We refer to the monograph of Diestel and Uhl [DU]

for more details. We will use, below, the following probabilistic characteriza-

tion: a Banach space X has the Radon–Nikodym property if and only if for

every probability space (Ω,Σ, µ) and every martingale (Mk) in L1(µ,X) sat-

isfying supk
∫
‖Mk‖ dµ < +∞, the martingale (Mk) converges in X µ-almost

everywhere.
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The following definition, due to Bourgain and Pisier, will be our basic con-

ceptual tool.

Definition B.13. [BP] Let X be a Banach space, let Y be a subspace of X

and denote by q : X → X/Y the natural quotient map. Also let δ > 0. We

say that Y is δ-well-placed inside X if for every probability space (Ω,Σ, µ) and

every f ∈ L1(µ,X) with
∫
f dµ ∈ Y we have∫

‖f‖ dµ >
∥∥∫ f dµ

∥∥+ δ

∫
‖q ◦ f‖ dµ. (B.3)

We will isolate some basic properties of δ-well-placed subspaces. To this end,

we recall the following standard notation. Given a probability space (Ω,Σ, µ),

a sub-σ-algebra Σ′ of Σ, a Banach space Z and a function g ∈ L1(µ,Z), by

E(g |Σ′) we shall denote the conditional expectation of g relative to Σ′.

Lemma B.14. [BP] Let X be a Banach space, let Y be a subspace of X and

denote by q : X → X/Y the natural quotient map. Let δ > 0 and assume that Y

is δ-well-placed inside X. Let (Ω,Σ, µ) be a probability space. Then the following

are satisfied.

(i) For every g ∈ L1(µ,X) we have∫
‖g‖ dµ >

∥∥∫ g dµ
∥∥+ δ

∫
‖q ◦ g‖ dµ− (2 + δ) ·

∥∥q(∫ g dµ
)∥∥.

(ii) If Σ′ is a sub-σ-algebra of Σ, then for every g ∈ L1(µ,X) we have

E(‖g‖ |Σ′) > ‖E(g |Σ′)‖+ δ · E(‖q ◦ g‖ |Σ′)− (2 + δ) · ‖q ◦ E(g |Σ′)‖

µ-almost everywhere.

(iii) If Σ′ is a sub-σ-algebra of Σ, then for every g ∈ L1(µ,X) we have∫
‖g‖ dµ >

∫
‖E(g |Σ′)‖ dµ+ δ

∫
‖q ◦ g‖ dµ− (2 + δ)

∫
‖q ◦E(g |Σ′)‖ dµ.

Proof. (i) Let g ∈ L1(µ,X) and set x =
∫
g dµ. Also let ε > 0 be arbitrary. We

select y ∈ Y such that

‖x− y‖ 6 ‖q(x)‖+ ε. (B.4)

Define f ∈ L1(µ,X) by f = g − (x − y)1Ω and notice that
∫
f dµ = y ∈ Y .

Applying inequality (B.3) to f , we obtain that∫
‖f‖ dµ > ‖y‖+ δ

∫
‖q ◦ g − q(x)‖ dµ. (B.5)
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Since g = f − (y − x)1Ω and y = x− (x− y), we see that∫
‖g‖ dµ >

∫
‖f‖ dµ− ‖x− y‖, (B.6)

‖y‖ > ‖x‖ − ‖x− y‖. (B.7)

Finally, notice that∫
‖q ◦ g − q(x)‖ dµ >

∫
‖q ◦ g‖ dµ− ‖q(x)‖. (B.8)

Combining, successively, inequalities (B.6), (B.5), (B.7), (B.8) and (B.4), we

conclude that∫
‖g‖ dµ >

∥∥ ∫ g dµ
∥∥+ δ

∫
‖q ◦ g‖ dµ− (2 + δ) ·

∥∥q(∫ g dµ
)∥∥− 2ε.

Since ε > 0 was arbitrary, the proof of part (i) is completed.

(ii) Notice that if g is a simple function, then the desired estimate follows by the

inequality obtained in part (i). The general case follows using this observation

and a standard approximation argument.

(iii) Follows immediately by integrating the estimate in part (ii). The proof is

completed.

The link between the notion of a δ-well-placed subspace and the notion of

an η-admissible embedding (see Definition 6.7) is given in the following lemma.

Lemma B.15. [BP] Let 0 < η 6 1 and let X,X ′ be Banach spaces. Also let

J : X → X ′ be an isometric embedding. Assume that J is η-admissible. Then

J(X) is (1− η)-well-placed inside X ′.

It is easy to see that Lemma B.15 implies Lemma 6.11. The proof given

below shows that Lemma B.15 is actually equivalent to Lemma 6.11.

Proof of Lemma B.15. Let q : X ′ → X ′/J(X) denote the natural quotient map.

Also let (Ω,Σ, µ) be a probability space, and let f ∈ L1(µ,X ′) be a simple

function with
∫
f dµ ∈ J(X). Then inequality (6.2) can be reformulated as∫
‖f‖ dµ >

∥∥∫ f dµ
∥∥+ (1− η)

∫
‖q ◦ f‖ dµ.

In other words, inequality (6.2) implies inequality (B.3) for simple functions.

The general case follows by a standard approximation argument. Indeed, let

f ∈ L1(µ,X ′) such that
∫
f dµ ∈ J(X). We may select a sequence (fn) in

L1(µ,X ′) consisting of simple functions, such that fn → f µ-almost everywhere
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and
∫
‖fn − f‖ dµ→ 0. By passing to a small perturbation of each fn, we may

assume that
∫
fn dµ ∈ J(X). Hence,∫
‖fn‖ dµ >

∥∥ ∫ fn dµ
∥∥+ (1− η)

∫
‖q ◦ fn‖ dµ

for every n ∈ N. Taking the limit as n → ∞ and using the dominated conver-

gence theorem, inequality (B.3) follows. The proof is completed.

We are ready to proceed to the proof of Theorem 6.13.

Proof of Theorem 6.13: the Radon–Nikodym property. Fix 0 < η < 1 and a sys-

tem (Fn, jn) of isometric embeddings such that each Fn is finite-dimensional and

for every n ∈ N the isometric embedding jn : Fn → Fn+1 is η-admissible. Let

X be the inductive limit of the system (Fn, jn).

As in Section 6.3, we start by making some simple observations. In particu-

lar, we view the sequence (Fn) as being an increasing (with respect to inclusion)

sequence of finite-dimensional subspaces of X such that
⋃
n Fn is dense in X.

For every n ∈ N by qn : X → X/Fn we shall denote the natural quotient map,

while for every pair n,m ∈ N with n < m by I(n,m) : Fn → Fm we shall denote

the inclusion operator. As the isometric embedding I(n, n + 1): Fn → Fn+1 is

η-admissible for every n ∈ N, by Lemma 6.9, we see that the isometric embed-

ding I(n,m) is also η-admissible for every pair n,m ∈ N with n < m. Applying

Lemma B.15, we see that Fn is (1− η)-well-placed inside Fm. Using a standard

approximation argument, we obtain the following basic fact.

Fact B.16. For every n ∈ N the space Fn is (1− η)-well-placed inside X.

We are now in the position to argue that the space X has the Radon–

Nikodym property. So, let (Ω,Σ, µ) be a probability space and let (Σk) be

an increasing sequence of sub-σ-algebras of Σ. Let (Mk) be a martingale in

L1(µ,X) adapted to (Σk) and assume that

sup
k

∫
‖Mk‖ dµ = C <∞. (B.9)

We have to show that (Mk) converges in X µ-almost everywhere. The main

claim is the following.

Claim B.17. [BP] We have

lim
n→∞

lim
k→∞

∫
‖qn ◦Mk‖ dµ = 0 (B.10)

Proof of Claim B.17. Fix l ∈ N. Notice that limn qn ◦Ml = 0 µ-almost every-

where. Therefore,

lim
n→∞

∫
‖qn ◦Ml‖ dµ = 0. (B.11)
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Let n ∈ N be arbitrary. Also let k > l be arbitrary. Then E(Mk |Σl) = Ml.

By Fact B.16, the subspace Fn is (1− η)-well-placed inside X. Hence, applying

part (iii) of Lemma B.14 to Y = Fn, g = Mk and Σ′ = Σl, we obtain that∫
‖Mk‖ dµ >

∫
‖Ml‖ dµ+ (1− η)

∫
‖qn ◦Mk‖ dµ− (3− η)

∫
‖qn ◦Ml‖ dµ.

Taking the limit superior above first in k, then in n and finally in l and using

(B.11), we conclude that

0 > (1− η) lim sup
n→∞

lim sup
k→∞

∫
‖qn ◦Mk‖ dµ > 0.

The claim is proved.

Let Y be a subspace of X and denote by Q : X → X/Y the natural quotient

map. Notice that the sequence (Q◦Mk) is a martingale in L1(µ,X/Y ) adapted

to (Σk). For every k ∈ N we set gk = ‖Q ◦Mk‖ ∈ L1(µ,R). The norm ‖ · ‖ of

X/Y is a convex function, and so, the sequence (gk) is a sub-martingale. That

is, for every k ∈ N the inequality E(gk+1 |Σk) > gk holds µ-almost everywhere.

Moreover, condition (B.9) reduces to the fact that supk
∫
|gk| dµ 6 C < +∞.

Hence, by [Bi, Theorem 35.5], we obtain the following fact.

Fact B.18. The following hold.

(i) The sequence (‖Mk‖) is convergent µ-almost everywhere.

(ii) For every n ∈ N the sequence (‖qn ◦Mk‖) is convergent µ-almost every-

where.

For every n ∈ N let hn = supk ‖qn ◦Mk‖. Notice that for µ-almost all ω ∈ Ω

the sequence
(
hn(ω)

)
is decreasing and, consequently, its limit exists.

Claim B.19. We have limhn = 0 µ-almost everywhere.

Proof of Claim B.19. Assume, towards a contradiction, that the claim is false.

Hence we may find A ∈ Σ and ε, δ > 0 such that

(a) µ(A) = ε and

(b) hn(ω) > δ for every n ∈ N and every ω ∈ A.

Moreover, by part (ii) of Fact B.18, we may assume that

(c) the sequence
(
‖qn◦Mk(ω)‖

)
is convergent for every n ∈ N and every ω ∈ A.
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Fix ω ∈ A. For every n ∈ N we select kn ∈ N such that ‖qn ◦Mkn(ω)‖ > δ.

Notice, first, that there exists an infinite subset L of N such that kn 6= km for

every n,m ∈ L with n 6= m. For if not, by Ramsey’s theorem, there would

existed an infinite subset M of N and k ∈ N such that kn = k for every n ∈M .

This clearly contradicts the fact that limn ‖qn ◦Mk(ω)‖ = 0.

Now let n ∈ N and m ∈ L with n < m. The sequence (Fn) is increasing

with respect to inclusion, and so,

‖qn ◦Mkm(ω)‖ > ‖qm ◦Mkm(ω)‖ > δ

by the choice of km. Therefore, for every ω ∈ A and every n ∈ N the set{
k ∈ N : ‖qn ◦Mk(ω)‖ > δ

}
is infinite. Invoking property (c) above, we obtain that

(d) for every ω ∈ A and every n ∈ N there exists ln ∈ N (depending on ω) such

that ‖qn ◦Mk(ω)‖ > δ for every k ∈ N with k > ln.

Combining properties (a) and (d) isolated above, we see that

lim
n→∞

lim
k→∞

∫
‖qn ◦Mk‖ dµ > ε · δ > 0.

This contradicts Claim B.17. The claim is proved.

Claim B.20. For µ-almost all ω ∈ Ω the set {Mk(ω) : k ∈ N} is a relatively

norm compact subset of X.

Proof of Claim B.20. Let ω ∈ Ω be such that

(a) limhn(ω) = 0 and

(b) sup{‖Mk(ω)‖ : k ∈ N} < +∞.

We will show that the set {Mk(ω) : k ∈ N} is relatively norm compact. By part

(i) of Fact B.18 and Claim B.19, this will finish the proof.

To this end we will argue by contradiction. So assume that there exist an

infinite subset L of N and ε > 0 such that

‖Mk(ω)−Ml(ω)‖ > ε (B.12)

for every k, l ∈ L with k 6= l. Since limhn(ω) = 0, there exists n0 ∈ N with

hn0(ω) < ε/4. It follows that for every k ∈ L we may find xk ∈ Fn0 such that

‖xk −Mk(ω)‖ < ε/4. (B.13)
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The sequence (xk)k∈L is bounded and the space Fn0 is finite-dimensional. There-

fore, there exists an infinite subset M of L such that

‖xk − xl‖ < ε/4 (B.14)

for every k, l ∈ M with k 6= l. Combining (B.13) and (B.14), we see that

‖Mk(ω)−Ml(ω)‖ < 3ε/4 for every k, l ∈M with k 6= l. This clearly contradicts

(B.12). The claim is proved.

Now let (x∗i ) be a sequence in BX∗ which separates the points in X. Invoking

(B.9), we see that for every i ∈ N the sequence (x∗i ◦Mk) is a bounded martingale

in L1(µ,R). Hence, by [Bi, Theorem 35.5], we obtain that

(P) for every i ∈ N the sequence (x∗i ◦Mk) is convergent µ-almost everywhere.

Combining Claim B.20 and property (P) isolated above, we conclude that the

martingale (Mk) must be convergent inX µ-almost everywhere. This shows that

the space X has the Radon–Nikodym property. The proof of Theorem 6.13 is

completed.



Appendix C

The Kuratowski–Tarski

algorithm

We will frequently need to compute the complexity of a given set. To this

end we will follow a method, employed by logicians, which is known as the

Kuratowski–Tarski algorithm (see [Mo] and [Ke]).

We will comment on the method which relies on the use of logical notations

in defining sets and functions. For instance, let X be a Polish space, and let P (x)

and Q(x) be expressions defining A and B respectively, i.e., A = {x ∈ X : P (x)}
and B = {x ∈ X : Q(x)}. Then the expression “P (x) and Q(x)” defines the

set A ∩B, the expression “P (x) or Q(x)” defines the set A ∪B while “¬P (x)”

defines the set Ac. In other words, conjunction corresponds to intersection,

disjunction to union and negation to complementation.

Now let X and Y be Polish spaces and let P (x, y) be an expression, where

x varies over X and y varies over Y , defining the set A = {(x, y) : P (x, y)}. In

this case, the expression “∃y ∈ Y with P (x, y)” defines the set B = projXA.

That is, existential quantification corresponds to projection. On the other hand,

universal quantification corresponds to the operation of co-projection since the

expression “∀y ∈ Y we have P (x, y)” defines the set B = (projXA
c)c.

We will illustrate by an example the above remarks. So, let X, Y and Z be

Polish spaces and let P (x, y, z) and Q(x, y) be expressions defining two Borel

subsets of X × Y × Z and X × Y respectively. Consider the subset A of X

defined by

x ∈ A⇔ ∃z ∈ Z with [∀y ∈ Y we have P (x, y, z)⇔ Q(x, y)].

The expression “P (x, y, z)⇔ Q(x, y)” is equivalent to

“[P (x, y, z) and Q(x, y)] or [¬P (x, y, z) and ¬Q(x, y)]”
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and so, it defines a Borel subset A1 of X × Y × Z. The formula

“∀y ∈ Y we have P (x, y, z)⇔ Q(x, y)”

defines the co-projection A2 of A1. Hence A2 is Π1
1. As the final quantifier is

existential, we conclude that the set A is the projection of A2, and so, A is Σ1
2.

We point out that it is the reasoning behind the above mentioned method

which justifies the use of the notation Σ0
ξ ,Π

0
ξ ,∆

0
ξ (1 6 ξ < ω) and Σ1

n,Π
1
n,∆

1
n

(n > 1) for the Borel and projective classes respectively. We refer to [Mo] and

the references therein for a detailed explanation.
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Open problems

1. Let X be a Banach space with property (S) (see Definition 2.28) and with a

Schauder basis. Let (en) be a normalized Schauder basis ofX. By Theorem 2.29,

there exists a map φX : ω1 × ω1 → ω1 such that for every ξ, ζ < ω1 and every

Y,Z ∈ NCX with o
(
TNC(Y,X, (en))

)
= ξ and o

(
TNC(Z,X, (en))

)
= ζ we have

o
(
TNC(Y ⊕ Z,X, (en))

)
6 φX(ξ, ζ).

Problem 1. Let X be a Banach space with property (S) and with a Schauder

basis. Find an explicit upper bound for the map φX .

Of particular importance are the cases “X = `2” and “X = C(2N)”.

2. Consider the class

SSD = {X ∈ SB : X∗∗ is separable}.

For every X ∈ SSD let

ϕSSD(X) = max
{

Sz(X),Sz(X∗)
}
.

The map SSD 3 X 7→ ϕSSD(X) behaves like a Π1
1-rank for most practical

purposes (see [D1]).

It turned out that the rank φSSD is also well-behaved when restricted on

the class REFL of separable reflexive Banach spaces. For instance, Odell,

Schlumprecht and Zsák [OSZ] have shown that for every countable ordinal ξ

the class {X ∈ REFL : ϕSSD(X) 6 ξ} is analytic.

Problem 2. Is the map REFL 3 X 7→ ϕSSD(X) a Π1
1-rank on REFL?

3. Let (en) be a normalized Schauder basis of C(2N). By Corollary 6.28, there

exists a map f : ω1 → ω1 such that for every countable ordinal ξ, every separable

Banach space X with o
(
TNC(X,C(2N), (en))

)
6 ξ embeds into a Banach space

Y with a Schauder basis satisfying o
(
TNC(Y,C(2N), (en))

)
6 f(ξ).
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Problem 3. Find an explicit upper bound for the map f .

4. Let C be a Π1
1 strongly bounded class of separable Banach spaces. Also let

φC : C → ω1 be a canonical Π1
1-rank on C. For every ξ < ω1 we set

Cξ = {Z ∈ C : φC(Z) 6 ξ}

and

uC(ξ) = min
{
φC(Y ) : Y ∈ C and is universal for the class Cξ

}
.

Notice that uC(ξ) is well-defined.

Problem 4. Find explicit upper bounds for the maps uREFL, uSD, uNU and

uNCX where X is a minimal Banach space not containing `1.

No bounds are known for uNU and uNCX . The problem of estimating the values

of these maps is related to Problems 1 and 3.

For the classes REFL and SD there are two results which provide almost

optimal upper bounds for the corresponding maps uREFL and uSD. The first

one is due to Odell, Schlumprecht and Zsák and deals with separable reflexive

spaces.

Theorem D.1. [OSZ] Let ξ < ω1. Then there exists a separable reflexive space

Y satisfying max
{

Sz(Y ),Sz(Y ∗)
}
6 ωξ·ω+1 and containing an isomorphic copy

of every separable reflexive space Z satisfying max
{

Sz(Z),Sz(Z∗)
}
6 ωξ·ω.

The second result is due to Freeman, Odell, Schlumprecht and Zsák and deals

with Banach spaces with separable dual.

Theorem D.2. [FOSZ] Let ξ < ω1. Then there exists a separable Banach

space Y satisfying Sz(Y ) 6 ωξ·ω+1 and containing an isomorphic copy of every

separable space Z satisfying Sz(Z) 6 ωξ·ω.

5. By Theorem 7.18, the class NCX is strongly bounded for every minimal

Banach space X not containing `1. The following problems are related to the

natural question whether the class NC`1 is also strongly bounded.

Problem 5. Is it true that every separable Banach space X not containing a

copy of `1 embeds into a space Y with a Schauder basis and not containing a

copy of `1?

Problem 6. Let (en) be the standard unit vector basis of `1. Does there exist

a map g : ω1 → ω1 such that for every countable ordinal ξ and every separable

Banach space X with o
(
TNC(X, `1, (en))

)
6 ξ the space X embeds into a Banach

space Y with a Schauder basis satisfying o
(
TNC(Y, `1, (en))

)
6 g(ξ)?

Problem 7. Is the class NC`1 strongly bounded?
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We notice that an affirmative answer to Problem 6 can be used to provide an

affirmative answer to Problem 7. (To see this combine Theorem 2.17, Lemma

2.25 and Theorem 7.17.)

It seems reasonable to conjecture that Problems 5, 6 and 7 have an af-

firmative answer. Our optimism is based on the following facts. Firstly, by

Theorem 7.17, Problem 7 is true within the category of Banach spaces with a

Schauder basis. Secondly, the “dual” versions of Problems 6 and 7 also have an

affirmative answer. Specifically, denoting by (en) the standard unit vector basis

of `1, we have the following theorem.

Theorem D.3. [D4] There exists a map f : ω1 → ω1 such that for every count-

able ordinal ξ and every separable Banach space X with o
(
TNC(X, `1, (en))

)
6 ξ,

the space X is a quotient of a Banach space Y with a Schauder basis satisfying

o
(
TNC(Y, `1, (en))

)
6 f(ξ).

Theorem D.4. [D4] Let C ⊆ SB. Then the following are equivalent.

(i) There exists a separable Banach space Y not containing a copy of `1 and

such that every space X ∈ C is a quotient of Y .

(ii) We have sup
{
o
(
TNC(X, `1, (en))

)
: X ∈ C} < ω1.

(iii) There exists an analytic subset A of NC`1 such that C ⊆ A.

6. Let

S = {X ∈ SB : X has a Schauder basis}.

By Lemma 2.25, the class S is analytic.

Problem 8. Is the class S analytic non-Borel?
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